A REPRESENTATION FORMULA FOR THE RESOLVENT OF CONFORMABLE FRACTIONAL STURM-LIOUVILLE OPERATOR
Abstract
In this study, the resolvent of the conformable fractional Sturm–Liouville operator is considered. An integral representation for the resolvent of this operator is obtained.
Keywords
Full Text:
PDFReferences
T. Abdeljawad: On conformable fractional calculus. J. Comput Appl. Math. 279 (2015), 57–66.
M. Abu Hammad and R. Khalil: Abel’s formula and Wronskian for conformable fractional differential equations. Intern. J. Differ. Equ. Appl., 13 (3) (2014), 177–183.
M. Abu Hammad and R. Khalil: Conformable fractional heat differential equations. Intern. J. Pure. Appl. Math., 94 (2) (2014), 215–221.
B. P. Allahverdiev, H. Tuna and Y. Yalc¸ınkaya: Conformable fractional Sturm–Liouville equation. Math. Meth. Appl. Sci., 42(10) (2019), 3508–3526.
D. Baleanu, F. Jarad and E. U˘gurlu: Singular conformable sequential differential equations with distributional potentials. Quaest. (2018) Math., DOI:10.2989/16073606.2018.1445134.
P. L. Butzer and U. Westphal: An Introduction to Fractional Calculus. Applications of Fractional Calculus in Physics, World Scientic, New Jersey, USA, 2000.
T. Gulsen, E. Yilmaz and S. Goktas: Conformable fractional Dirac system on time scales. J Inequal Appl 2017, 161 (2017). https://doi.org/10.1186/s13660-017-1434-8.
R. Khalil and H. Abu-Shaab: Solution of some conformable fractional differential equations. Inter. J. Pure Appl. Math., 103(4) (2015), 667–673.
R. Khalil, M. Al Horani, A. Yousef and M., Sababheh: A new definition of fractional derivative. J. Comput. Appl. Math., 264 (2014), 65–70.
B. M. Levitan and I. S. Sargsjan: Sturm–Liouville and Dirac Operators. Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1991 (translated from the Russian).
E. C. Titchmarsh: Eigenfunction Expansions Associated with Second-order Differential Equations. Part I. Second Edition Oxford, Great Britain: Clarendon Press, 1962.
E. Yilmaz, T. Gulsen and E. S. Panakhov: Existence results for a conformable type Dirac system on time scales in quantum physics. Appl. Comput. Math., 21(3) (2022), 279–291.
DOI: https://doi.org/10.22190/FUMI230310009A
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)