ROUGH IDEAL CONVERGENCE OF DOUBLE SEQUENCES IN INTUITIONISTIC FUZZY NORMED SPACES
Abstract
The idea of rough statistical convergence for double sequences was studied by Ozcan and Or [34] in a intuitionistic fuzzy normed space. Recently the same has been generalized in the ideal context by Hossain and Banerjee [17] for sequences. Here in this paper we have discussed the idea of rough ideal convergence of double sequences in intuitionistic fuzzy normed spaces generalizing the idea of rough statistical convergence of double sequences. Also we have defined rough I2-cluster points for a double sequence and also investigated some of the basic properties associated with rough I2-limit set of a double sequence in a intuitionistic fuzzy normed space.
Keywords
Full Text:
PDFReferences
K. Atanassov: Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
R. Antal, M. Chawla and V. Kumar: Rough statistical convergence in intuitionistic fuzzy normed spaces, Filomat, 35 (13) (2021), 4405-4416.
S. Aytar: Rough statistical convergence, Numer. Funct. Anal. Optim. 29 (3-4) (2008), 291-303.
L. C. Barros, R. C. Bassanezi and P. A. Tonelli: Fuzzy modelling in population dynamics, Ecological modelling, 128 (1) (2000), 27-33.
A. K. Banerjee and R. Mondal: Rough convergence of sequences in a cone metric space, J. Anal. 27 (4) (2019), 1179-1188.
C. Belen and S. A. Mohiuddine: Generalized weighted statistical convergence and application, Appl. Math. Comput. 219 (18) (2013), 9821-9826.
P. Das, P. Kostyrko, W. Wilczy´nski and P. Malik: I and I∗-convergence of double sequences, Math. Slovaca, 58 (5) (2008), 605-620.
E. D¨undar: On rough I2-convergence of double sequences, Numer. Funct. Anal. Optim. 37 (4) (2016), 480-491.
A. Esi, N. Subramanian and A. Esi: Wijsman rough I-convergence limit point of triple sequences defined by a metric function, Ann. Fuzzy Math. Inform. 15 (1) (2018), 47-57.
H. Fast: Sur la convergence statistique, Colloq. Math. 2 (3-4), (1951), 241-244.
A. L. Fradkov and R. J. Evans: Control of chaos: Methods and applications in engineering, Annu. Rev. Control, 29 (1) (2005), 33-56.
R. Giles: A computer program for fuzzy reasoning, Fuzzy Sets and Systems, 4 (3) (1980), 221-234.
S. Ghosal and A. Ghosh: Rough weighted I-limit points and weighted I-cluster points in θ-metric space, Math. Slovaca, 70 (3) (2020), 667-680.
H. G¨um¨us¸ and N. Demir: Rough ΔI− Convergence, Konuralp J. Math. 9 (1) (2021), 209-216.
B. Hazarika, A. Alotaibi and S. A. Mohiuddine: Statistical convergence in measure for double sequences of fuzzy-valued functions, Soft Comput. 24 (2020), 6613-6622.
L. Hong and J. Q. Sun: Bifurcations of fuzzy nonlinear dynamical systems, Commun. Nonlinear Sci. Numer. Simul. 11 (1) (2006), 1-12.
N. Hossain and A. K. Banerjee: Rough I-convergence in intuitionistic fuzzy normed spaces, Bull. Math. Anal. Appl. 14 (4) (2022), 1-10.
P. Kostyrko, T. ˇSal´at and W. Wilczy´nski: I-convergence, Real Anal. Exchange, 26 (2) (2000/01), 669-685.
E. P. Klement, R. Mesiar and E. Pap: Triangular norms. Position paper I: basic analytical and algebraic properties, Fuzzy Sets and Systems, 143 (2004), 5-26.
V. Kumar and M. Mursaleen: On (λ, μ)-statistical convergence of double sequences on intuitionistic fuzzy normed spaces, Filomat, 25 (2) (2011), 109-120.
V. Karakaya, N. S¸ims¸ek, M. Ert¨urk and F. G¨ursoy: On ideal convergence of sequences of functions in intuitionistic fuzzy normed spaces, Appl. Math. Inf. Sci. 8 (5) (2014), 2307-2313.
N. Konwar and P. Debnath: Iλ-convergence in intuitionistic fuzzy n-normed linear space, Ann. Fuzzy Math. Inform. 13 (1) (2017), 91-107.
M. Kiris¸ci: Fibonacci statistical convergence on intuitionistic fuzzy normed spaces, J. Intell. Fuzzy Syst. 36 (6) (2019), 5597-5604.
V. A. Khan and M. Ahmad: On (λ, μ)-Zweier ideal convergence in intuitionistic fuzzy normed space, Yugosl. J. Oper. Res. 30 (4) (2020), 413-427.
¨ O. Kis¸i and P. Debnath: Fibonacci ideal convergence on intuitionistic fuzzy normed linear spaces, Fuzzy Inf. Eng. 14 (3) (2022), 255-268.
J. Madore: Fuzzy physics, Ann. Physics, 219 (1) (1992), 187-198.
S. A. Mohiuddine and B. A. S. Alamri Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. RACSAM,
(3) (2019), 1955-1973.
S. A. Mohiuddine, A. Asiri and B. Hazarika: Weighted statistical convergence through difference operator of sequences of fuzzy numbers with application to fuzzy approx imation theorems, Int. J. Gen. Syst. 48 (5) (2019), 492-506.
S. A. Mohiuddine, B. Hazarika and M. A. Alghamdi: Ideal relatively uniform convergence with Korovkin and Voronovskaya types approximation theorems, Filomat, 33 (14) (2019), 4549-4560.
M. Mursaleen and O. H. H. Edely: Statistical convergence of double sequences, J. Math. Anal. Appl. 28 (1) (2003), 223-231.
M. Mursaleen and S. A. Mohiuddine: Statistical convergence of double sequences in intuitionistic fuzzy normed spaces, Chaos Solitons Fractals, 41 (5) (2009), 2414-2421.
S. A. Mohiuddine and Q. D. Lohani: On generalized statistical convergence in intuitionistic fuzzy normed space, Chaos Solitons Fractals, 42 (3) (2009), 1731-1737.
M. Mursaleen, S. A. Mohiuddine and O. H. H. Edely: On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comput. Math. Appl. 59 (2) (2010), 603-611.
A. ¨Ozcan and A. Or: Rough statistical convergence of double sequences in intuitionistic fuzzy normed spaces, J. New Results Sci. 11 (3) (2022), 233-246.
H. X. Phu: Rough convergence in normed linear spaces, Numer. Funct. Anal. Optim. 22 (1-2) (2001), 199-222.
H. X. Phu: Rough continuity of linear operators, Numer. Funct. Anal. Optim. 23, (2002), 139-146.
H. X. Phu: Rough convergence in infinite dimensional normed spaces, Numer. Funct. Anal. Optim. 24, (2003), 285-301.
J. H. Park: Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals, 22 (5) (2004), 1039-1046.
S. K. Pal, D. Chandra and S. Dutta: Rough ideal convergence, Hacet. J. Math. Stat. 42 (6) (2013), 633-640.
H. Steinhaus: Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1) (1951), 73-74.
B. Schweizer and A. Sklar: Statistical metric spaces, Pacific J. Math. 10 (1) (1960), 313-334.
R. Saadati and J. H. Park: On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals, 27 (2) (2006), 331-344.
R. Saadati and J. H. Park: Intuitionistic fuzzy Euclidean normed spaces, Commun. Math. Anal. 1 (2) (2006), 85-90.
M. Sen: On I-limit superior and I-limit Inferior of sequences in intuitionistic fuzzy normed spaces, International Journal of Computer Applications, 85 (3) (2014), 30-33.
L. A. Zadeh: Fuzzy sets, Inform. control, 8 (1965), 338-353.
DOI: https://doi.org/10.22190/FUMI230402028M
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)