SOME NEW INEQUALITIES FOR (s, P )-FUNCTIONS

Mahir Kadakal, İmdat İşcan, Huriye Kadakal

DOI Number
https://doi.org/10.22190/FUMI230408021K
First page
285
Last page
298

Abstract


In this paper, we obtain some new Hermite-Hadamard type inequalities for functions whose first derivative in absolute value is (s; P )-function by using Holder, power-mean and Holder-Iscan integral inequalities. Then, the the authors compare the results obtained with both Holder, Holder-Iscan integral inequalities and prove that the Holder-Iscan integral inequality gives a better approximation than the Holder integral inequality. Next, we point out some applications for some inequalities related to special means of real numbers.


Keywords

(s, P )-function, Hermite-Hadamard inequality, Holder-Iscan inequality.

Full Text:

PDF

References


A. Barani and S. Barani: Hermite-Hadamard type inequalities for functions when a power of the absolute value of the first derivative is P-convex. Bull. Aust. Math. Soc. 86(1) (2012), 129-134.

K. Bekar: Hermite-Hadamard Type Inequalities for Trigonometrically P-functions. Comptes rendus de l’Academie bulgare des Sciences 72(11) (2019), 1449-1457.

M. Bombardelli and S. Varošanec: Properties of h-convex functions related to the Hermite-Hadamard-Fejer inequalities. Comput. Math. Appl. 58 (2009), 1869-1877.

P. Cerone and S. S. Dragomir: Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions. Demonstratio Mathematica 37(2) (2004), 299-308.

S. S. Dragomir and R. P. Agarwal: Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 11 (1998), 91-95.

S. S. Dragomir and S. Fitzpatrik: The Hadamard’s inequality for s-convex functions in the second sense. Demonstration Math. 32(4) (1999), 687-696.

S. S. Dragomir, J. Pečarić and L. E. Persson: Some inequalities of Hadamard Type. Soochow Journal of Mathematics 21(3) (2001), 335-341.

J. Hadamard: Etude sur les proprietes des fonctions entieres en particulier d’une fonction consideree par Riemann. J. Math. Pures Appl. 58 (1893), 171-215.

H. Hudzik and L. Maligranda: Some remarks on s-convex functions. Aequationes Math 48 (1994), 100-111.

I. Iscan: New refinements for integral and sum forms of Holder inequality. Journal of inequalities and applications 2019(1) (2019), 1-11.

I. Iscan and V. Olucak: Multiplicatively Harmonically P-Functions and Some Related Inequalities. Sigma J. Eng. & Nat. Sci. 37(2) (2019), 521-528.

I. Iscan, E. Set and M. Emin Ozdemir: Some new general integral inequalities for P-functions. Malaya J. Mat. 2(4) (2014), 510-516.

M. Kadakal, I. Iscan, H. Kadakal and K. Bekar: On improvements of some integral inequalities. Honam Mathematical Journal 43(3) (2021), 441-452.

S. Numan and I. Iscan: On (s, P)-functions and related inequalities. Sigma J. Eng. Nat. Sci. 40(3) (2022), 585-592.

S. Varošanec: On h-convexity. J. Math. Anal. Appl. 326 (2007), 303-311.




DOI: https://doi.org/10.22190/FUMI230408021K

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)