POINTWISE 1-TYPE GAUSS MAP OF DEVELOPABLE SMARANDACHE RULED SURFACES IN $\mathbb{E}^{3}$

Stuti - Tamta, Ram Shankar Gupta

DOI Number
https://doi.org/10.22190/FUMI230504048T
First page
741
Last page
759

Abstract


In this paper, we study developable TN, TB, and NB-Smarandache ruled surface with pointwise 1-type Gauss map. In particular, we obtain every such developable TN-Smarandache ruled surface has constant mean curvature, developable TB Smarandache ruled surface is minimal if and only if the curve is a planar curve or helix, and developable NB-Smarandache ruled surface is always plane. Also, we give some examples.


Keywords

Smarandache ruled surface, Gauss map, pointwise 1-type, Laplace-Beltrami operator.

Full Text:

PDF

References


P. Alegre, K. Arslan, A. Carriazo, C. E. Murathan and G. ¨Ozt¨urk: Some special types of developable ruled surface, Hacet. J. Math. Stat., 39(3)(2010), 319—325.

A. T. Ali: Special Smarandache curves in the Euclidean space, International J. Math. Combin., 2(2010), 30–36.

C. Ashbacher: Smarandache geometries, Smarandache Notions Journal, 8(1-3)(1997), 212–215.

C. Baikoussis, B. Y. Chen and L. Verstraelen: Ruled surfaces and tubes with finite type Gauss map, Tokyo J. Math., 16(2)(1993), 341-–349.

J. L. M. Barbosa and A. G. Colares: Minimal surfaces in R3, Springer-Verlag Berlin heidelberg, 1986.

O. Bektas and S. Yuce: Special Smarandache curves according to Darboux frame in Euclidean 3-space, Rom. J. Math. Comput. Sci., 3(1)(2012), 48—59.

M. Cetin, Y. Tuncer and M. K. Karacan: Smarandache curves according to Bishop frame in Euclidean 3-space, Gen. math. notes, 20(2)(2014), 50—66.

B. Y. Chen: Finite type submanifolds and generalizations, University of Rome, Rome, 1985.

B. Y. Chen and P. Piccini: Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc., 35(2)(1987), 161—186.

B. Y. Chen, M. Choi and Y. H. Kim: Surfaces of revolution with pointwise 1-type Gauss map, J. Korean Math. Soc., 42(3)(2005), 447—455.

B. Y. Chen: Total mean curvature and submanifolds of finite type, 2nd Edition, World Scientific, Hackensack, NJ, 2014.

M. Choi and Y. H. Kim: Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map, Bull. Korean Math Soc., 38(4)(2001), 753–761.

M. Choi, Y. H. Kim and D. W. Yoon: Classification of ruled surfaces with pointwise 1-type Gauss map, Taiwan. J. Math., 14(4)(2010), 1297–1308.

M. P. Do Carmo : Differential Geometry of Curves and Surfaces, Prentice Hall, Englewood Cliffs, NJ, 1976.

Y. H. Kim and D. W. Yoon: Ruled surfaces with pointwise 1-type Gauss map, J. Geom. Phys., 34(3-4)(2000), 191-–205.

S. Ouarab: Smarandache ruled surfaces according to Frenet-Serret frame of a regular curve in E3, Abstr. Appl. Anal., vol. 2021, Article ID 5526536, 2021, 8 pages.

B. Ravani and J. W. Wang: Computer aided geometric design of line constructs, ASME J. Mech. Des., 113(4)(1991), 363–371.

S. Senyurt, D. Canli and E. Can: Some special Smarandache ruled surfaces by Frenet Frame in E3 -I, Turkish Journal of Science, 7(1)(2022), 31–42.

E. M. Solouma and W. M. Mahmoud: On spacelike equiform Bishop Smarandache curves on S21, J. Egypt. Math. Soc., 27(7)(2019), 1–17.

S. Tamta and R. S. Gupta: Spherical Indicatrix of a new approach to Bertrand curves in Euclidean 3-space, Kyungpook Math. J., 63(2)(2023), 263–285.

S. Tamta and R. S. Gupta: New parametrization of Bertrand partner D-curves in E3, Bol. Soc. Paran. Mat., (in press).

M. Turgut and S.Yilmaz: Smarandache curves in Minkowski space-time, International J. Math. Combin., 3(2008), 51–55.

M. Yang and E. Lee: NC verification for wire-EDM using an R-map, Comput. Aided Des., 28(9)(1996), 733-740.




DOI: https://doi.org/10.22190/FUMI230504048T

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)