### MATRIX TRANSFORMS OF SPEED-SUMMABLE AND SPEED-BOUNDED SEQUENCES

**DOI Number**

**First page**

**Last page**

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

A. Aasma and P. N. Natarajan: Matrix transforms between subspaces of summability domains of matrices determined by speed of convergence. Indian J. Math., to appear.

A. Aasma and P. N. Natarajan: Matrix transforms of subspaces of summability domains of matrices determined by speed of convergence. Filomat 37(30) (2023), 10209–10218.

A. Aasma and P. N. Natarajan: Absolute convergence with speed and matrix transforms. TWMS J. App. and Eng. Math., to appear.

A. Aasma and P. N. Natarajan: Matrix transforms between sequence spaces defined by speeds of convergence. Filomat 37(4) (2023), 1029–1036.

A. Aasma and P. N. Natarajan: Matrix transforms of subspaces of summability domains of normal matrices determined by speed. Facta Universitatis. Series Mathematics and Informatics 37 (2022), 773-782.

A. Aasma, H. Dutta and P. N. Natarajan: An Introductory Course in Summability Theory. John Wiley and Sons, Hoboken, USA, 2017.

A. Aasma: Convergence Acceleration and Improvement by Regular Matrices. In: Dutta, H., Rhoades, B.E. (eds.), Current Topics in Summability Theory and Applications, Springer, Singapore, 2016, 141-180.

A. Aasma: On the summability of Fourier expansions in Banach spaces. Proc. Estonian Acad. Sci. Phys. Math. 51 (2002), 131–136.

A. Aasma: Matrix transformations of λ-boundedness fields of normal matrix methods. Studia Sci. Math. Hungar. 35 (1999), 53–64.

A. Aasma: Matrix transformations of λ-summability fields of λ-reversible and λ-perfect methods. Comment. Math. Prace Mat. 38 (1998), 1–20.

A. Aasma: Comparison of orders of approximation of Fourier expansions by different matrix methods. Facta Universitatis. Series Mathematics and Informatics 12 (1997), 233–238.

S. Baron: Introduction to the Theory of Summability of Series. Valgus, Tallinn, 1977.

J. Boos: Classical and Modern Methods in Summability. University Press, Oxford, 2000.

B. B. Jena, S. K. Paikray and U. K. Misra: Strong Riesz summability of Fourier series. Proyecciones J. Math. 39 (2020), 1615-1626.

B. B. Jena, S. K. Paikray, S. A. Mohiuddine and V. N. Mishra: Relatively equi-statistical convergence via deferred N¨orlund mean based on difference operator of fractional-order and related approximation theorems. Aims Math. 5 (2020), 650–672.

E. Jurimae: Matrix mappings between rate-spaces and spaces with speed. Acta Et Comment. Univ. Tartuensis 970 (1994), 29–52.

G. Kangro: On the summability factors of the Bohr-Hardy type for a given speed I. Proc. Estonian Acad. Sci. Phys. Math. 18 (1969), 137–146 (in Russian).

G. Kangro: Summability factors for the series λ-bounded by the methods of Riesz and Ces`aro. Acta Comment. Univ. Tartuensis 277 (1971), 136–154 (in Russian).

T. Leiger: Methods of functional analysis in summability theory. Tartu University, Tartu, 1992 in Estonian).

P. N. Natarajan: Classical summability theory. Springer, 2017.

M. Parto, S. K. Paikray and B. B. Jena: Absolute index N¨orlund summability of improper integrals. TWMS J. App. and Eng. Math. 10 (2020), 2-8.

P. K. Pattnaik, S. K. Paikray and B. B. Jena: Generalised Riesz and N¨orlund types means of sequences of fuzzy numbers. European J. Pure and Appl. Math. 13 (2020), 1088-1096.

T. Pradhan, S. K. Paikray, B. B. Jena and H. Dutta: On approximation of the rate of convergenceof Fourier series in the generalized H¨older metric by deferred N¨orlund mean. Afrika Mathematika 30 (2019), 1119-1131.

M. Stieglitz and H. Tietz: Matrixtransformationen von Folgenr¨aumen. Eine Ergebnis¨ubersicht. Math. Z. 154 (1977), 1–14.

DOI: https://doi.org/10.22190/FUMI230614052A

### Refbacks

- There are currently no refbacks.

ISSN 0352-9665 (Print)