STRONG DOMINATION NUMBER OF HAJÓS SUM AND VERTEX-SUM OF TWO GRAPHS
Abstract
Keywords
Full Text:
PDFReferences
S. Akbari, S. Alikhani and Y.H. Peng: Characterization of graphs using domination polynomial, Europ. J. Combin., 31 (2010) 1714-1724.
S. Alikhani and E. Deutsch: More on domination polynomial and domination root, Ars Combin. 134 (2017) 215–232.
S. Alikhani, N. Ghanbari and H. Zaherifar: Strong domination number of some operations on a graph, Commun. comb. optim., in press. DOI:10.22049/CCO.2023.28649.1652
S. Alikhani and Y.H. Peng: Introduction to domination polynomial of a graph, Ars Combin. 114 (2014) 257-266.
F. Barioli, S. Fallat and L. Hogben: Computation of minimal rank and path cover number for certain graphs, Linear Algebra Appl. 392 (2004) 289-–303.
R. Boutrig and M. Chellali: A note on a relation between the weak and strong domination numbers of a graph, Opuscula Math. 32 (2012) 235-238.
G. Hajós: Über eine Konstruktion nicht n-färbbarer Graphen, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe, 10 (1961) 116–117.
T.W. Haynes, S.T. Hedetniemi and P.J. Slater: Fundamentals of domination in graphs, Marcel Dekker, NewYork (1998).
D. Rautenbach: Bounds on the strong domination number graphs, Discrete Math., 215 (2000) 201-212.
E. Sampathkumar and L.Pushpa Latha: Strong weak domination and domination balance in a graph, Discrete Math. 161 (1) (1996) 235-242.
M.H. Shekarriz, S.A. Talebpour, B. Ahmadi, M.H. Shirdareh Haghighi and S. Alikhani: Distinguishing threshold for some graph operations, Iran. J. Sci. 47 (2023) 199–209.
S.K. Vaidya and R.N. Mehta: Strong domination number of some cycle related graphs, Int. J. Math. 3 (2017) 72-80.
S.K. Vaidya and S.H. Karkar: On Strong domination number of graphs, Saurashtra University, India 12 (2017) 604-612.
H. Zaherifar, S. Alikhani and N. Ghanbari: On the strong dominating sets of graphs, J. Alg. Sys., 11(1) (2023) 65-76.
DOI: https://doi.org/10.22190/FUMI230720032G
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)