ON DOUGLAS TENSOR OF INFINITE SERIES FINSLER SPACE
Abstract
In this article, we consider the Finsler space Fn (n > 2) with an infiniteseries (α, β)-metric and establish the necessary and sufficient conditions for it to be of Douglas type. Additionally, we demonstrate the criteria under which this metric in a Finsler space becomes a Berwald space. Furthermore, the space is shown to be projectively flat if it is a Berwald space.
Keywords
Full Text:
PDFReferences
S. Basco and M. Matsumoto: On Finsler space of Douglus type. A genralization of the notion of Berwald space, Publ. Math. Debrecen 51 (1997) 385-406.
L. Benling: Projectively flat Matsumoto metric and its Approximation. Acta Mathematica Scientia, 27B(4), 781-789(2007).
S. S. Chern and Z. Shen: Riemannian-Finsler geometry. Singapore, World Scientic, (2005).
M. Hashiguchi, S. Hojo and M. Matsumoto: On Landsberg spaces of dimension two with (α, β)-metric. Tensor N.S., 57, 145-153(1996).
M. Matsumoto: On C-reducible Finsler spaces. Tensor N.S., 24, 29-37 (1972.)
M. Matsumoto: The Berwald connection of a Finsler space with an (α, β)-metric. Tensor, N. S., 50, 18-21(1991).
M. Matsumoto: Projective flat Finsler space with (α, β)-metric. Reports on Mathematical Physics 30(1), 15-20 (1991).
M. Matsumoto: The theory of Finsler spaces with (α, β)-metric. Reports on Mathematical Physics, 31, (1992).
M. Matsumoto: The theory of Finsler spaces with m−th root metric II. Publ. Math. Debreceen, 49, 135-155 (1996).
H. S. Park and E. S. Lee: Finsler spaces with an Approximate Matsumoto metric of Douglas type. Comm. Korean Math. Soc., 14(3), 535-544(1999).
G. Shanker and R. Yadav: Finsler space with the third approximate Matsumoto metric. Tensor, N. S., 73 (2011).
H. Zhu: On a class of Douglas Finsler metrics. Acta Mathematica Scientia, 38B(2) 695-708 (2018).
DOI: https://doi.org/10.22190/FUMI230903005G
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)