ON DOUGLAS TENSOR OF INFINITE SERIES FINSLER SPACE

M. K. Gupta, Abha Sahu, Cenap Ozel

DOI Number
https://doi.org/10.22190/FUMI230903005G
First page
049
Last page
055

Abstract


In this article, we consider the Finsler space Fn (n > 2) with an infiniteseries (α, β)-metric and establish the necessary and sufficient conditions for it to be of Douglas type. Additionally, we demonstrate the criteria under which this metric in a Finsler space becomes a Berwald space. Furthermore, the space is shown to be projectively flat if it is a Berwald space.

 


Keywords

Finsler space, infinite series (α, β)-metric, Matsumoto metric, Randers metric, Douglas space, Projectively flat.

Full Text:

PDF

References


S. Basco and M. Matsumoto: On Finsler space of Douglus type. A genralization of the notion of Berwald space, Publ. Math. Debrecen 51 (1997) 385-406.

L. Benling: Projectively flat Matsumoto metric and its Approximation. Acta Mathematica Scientia, 27B(4), 781-789(2007).

S. S. Chern and Z. Shen: Riemannian-Finsler geometry. Singapore, World Scientic, (2005).

M. Hashiguchi, S. Hojo and M. Matsumoto: On Landsberg spaces of dimension two with (α, β)-metric. Tensor N.S., 57, 145-153(1996).

M. Matsumoto: On C-reducible Finsler spaces. Tensor N.S., 24, 29-37 (1972.)

M. Matsumoto: The Berwald connection of a Finsler space with an (α, β)-metric. Tensor, N. S., 50, 18-21(1991).

M. Matsumoto: Projective flat Finsler space with (α, β)-metric. Reports on Mathematical Physics 30(1), 15-20 (1991).

M. Matsumoto: The theory of Finsler spaces with (α, β)-metric. Reports on Mathematical Physics, 31, (1992).

M. Matsumoto: The theory of Finsler spaces with m−th root metric II. Publ. Math. Debreceen, 49, 135-155 (1996).

H. S. Park and E. S. Lee: Finsler spaces with an Approximate Matsumoto metric of Douglas type. Comm. Korean Math. Soc., 14(3), 535-544(1999).

G. Shanker and R. Yadav: Finsler space with the third approximate Matsumoto metric. Tensor, N. S., 73 (2011).

H. Zhu: On a class of Douglas Finsler metrics. Acta Mathematica Scientia, 38B(2) 695-708 (2018).




DOI: https://doi.org/10.22190/FUMI230903005G

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)