VISUAL CRYPTOGRAPHY SCHEME ON GRAPH ACCESS STRUCTURES WITH OPTIMAL PIXEL EXPANSION FOUR
Abstract
Keywords
Full Text:
PDFReferences
S. Arumugam, R. Lakshmanan, Atulya K. Nagar, Visual cryptography scheme
for graphs with vertex covering number two Nat. Acad. Sci. Lett., 36 (6)
-579 (2013).
S. Arumugam, R. Lakshmanan, Atulya K. Nagar, Graph access structure with
optimal pixel expansion three, Inform. and Comput., 230 67-75 (2013).
G. Ateniese, C. Blundo, A.D. Santis, D.R. Stinson, Visual cryptography for
general access structures, Inform. and Comput, 129 86-106 (1996).
G. Ateniese, C. Blundo, A.D. Santis, D.R. Stinson, Construction and bounds
for visual cryptography, in: Proc. ICALP 96, Springer, Berlin, 1996, pp. 416-
G. Chartrand, L. Lesniak, Graphs and Digraphs, fourth ed., Chapman and
Hall, CRC, 2005.
M.H. Dehkordi, A. Cheraghi, Maximal independent sets for the pixel expansion
of graph access structures, IUST Int. J. Sci. Eng., 19 (1–2) 13-16
(2008).
H. Hajiabolhassan, A. Cheraghi, Bounds for visual cryptography schemes,
Discret Appl. Math., 158(6) 659-665 (2010).
M. Naor, A. Shamir, Visual cryptography, in: A. De Santis (Ed.), Advances
in Cryptography, EUROCRYPT ’94, in: Lecture Notes in Comput. Sci.,
Springer-Verlag, 950 1-12 (1995).
E.R. Verheul, H.C.A. Van Tilborg, Constructions and Properties of k out of
n Visual Secret Sharing Schemes, Designs, Codes and Cryptography, 11
-196 (1997).
T. Hofmeister, M. Krause , H.U. Simon, Contrast-Optimal k out of n Secret
Sharing Schemes in Visual Cryptography, Computing and combinatorics,
471-485 (2000).
DOI: https://doi.org/10.22190/FUMI230904058C
Refbacks
ISSN 0352-9665 (Print)