VISUAL CRYPTOGRAPHY SCHEME ON GRAPH ACCESS STRUCTURES WITH OPTIMAL PIXEL EXPANSION FOUR

Abbas Cheraghi, Mahmood Davarzani

DOI Number
https://doi.org/10.22190/FUMI230904058C
First page
905
Last page
917

Abstract


The strong access structure obtained from graph $G$ is $ \Gamma (G)$ if $G=(V, E)$ is a connected graph. A visual cryptography scheme (VCS) is a specific technique for encoding a secret image that typically changes any pixel in the image to  $m$ subpixels for a group of active participants. Within each VCS, only qualified sets can retrieve the secret picture by stacking their preferred shares. The pixel expansion value is traditionally called $m$, and the minimum pixel expansion value of a VCS for $ \Gamma (G)$ is referred to as $m^{*}(G)$. The principal aim of this paper is to identify all connected graphs $G$ with $m^{*}(G)=4$ and $ \omega(G) = 6$, which realistically is the clique number of graph $G$.

Keywords

Visual cryptography scheme, Graph access structure, Access structure

Full Text:

PDF

References


S. Arumugam, R. Lakshmanan, Atulya K. Nagar, Visual cryptography scheme

for graphs with vertex covering number two Nat. Acad. Sci. Lett., 36 (6)

-579 (2013).

S. Arumugam, R. Lakshmanan, Atulya K. Nagar, Graph access structure with

optimal pixel expansion three, Inform. and Comput., 230 67-75 (2013).

G. Ateniese, C. Blundo, A.D. Santis, D.R. Stinson, Visual cryptography for

general access structures, Inform. and Comput, 129 86-106 (1996).

G. Ateniese, C. Blundo, A.D. Santis, D.R. Stinson, Construction and bounds

for visual cryptography, in: Proc. ICALP 96, Springer, Berlin, 1996, pp. 416-

G. Chartrand, L. Lesniak, Graphs and Digraphs, fourth ed., Chapman and

Hall, CRC, 2005.

M.H. Dehkordi, A. Cheraghi, Maximal independent sets for the pixel expansion

of graph access structures, IUST Int. J. Sci. Eng., 19 (1–2) 13-16

(2008).

H. Hajiabolhassan, A. Cheraghi, Bounds for visual cryptography schemes,

Discret Appl. Math., 158(6) 659-665 (2010).

M. Naor, A. Shamir, Visual cryptography, in: A. De Santis (Ed.), Advances

in Cryptography, EUROCRYPT ’94, in: Lecture Notes in Comput. Sci.,

Springer-Verlag, 950 1-12 (1995).

E.R. Verheul, H.C.A. Van Tilborg, Constructions and Properties of k out of

n Visual Secret Sharing Schemes, Designs, Codes and Cryptography, 11

-196 (1997).

T. Hofmeister, M. Krause , H.U. Simon, Contrast-Optimal k out of n Secret

Sharing Schemes in Visual Cryptography, Computing and combinatorics,

471-485 (2000).




DOI: https://doi.org/10.22190/FUMI230904058C

Refbacks





© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)