ON CONFORMAL QUASI HEMI-SLANT SUBMERSIONS FROM LORENTZIAN PARA SASAKIAN MANIFOLDS ONTP RIEMANNIAN MANIFOLDS

Sushil Kumar, Rajendra Prasad, Punit K. Singh

DOI Number
https://doi.org/10.22190/FUMI230925059K
First page
919
Last page
935

Abstract


In the present article, our purpose is to define and study conformal quasi hemi-slant submersions (cqhs submersions, in short) from Lorentzian para Sasakian manifolds onto Riemannian manifolds. Its geometric properties are also investigated. Lastly, we give a non-trivial example for this type of submersion


Keywords

Lorentzian para Sasakian manifolds, Conformal submersion, Conformal quasi hemi-slant submersion.

Full Text:

PDF

References


bibitem{2} M . A . Akyol and B. Sahin, textit{Conformal slant submersions}, Hacet.

J. Math. Stat., $bf{48(1)}$ (2019), 28-44.

bibitem{3} M. A . Akyol, textit{Conformal semi-slant submersions}, Int. J. Geom.

Methods in Mod. Phys., $ bf {14(7)}$ (2017), 1750114 ([25pages]).

bibitem{S1} M. A. Akyol and B. Sahin, textit{Conformal semi-invariant submersions},

Commun. Contemp. Math., $ bf {42(3)}$ (2017), 491-507.

bibitem{ALT} C. Altafini, textit{Redundand robotic chains on Riemannian

submersions}, IEEE Transaction on Robotics and Automation, $ bf {20(2)}$ (2004),

-340.

bibitem{6} P. Baird and J.C.Wood, textit{Harmonic Morphisms Between Riemannian

Manifolds}, LMS Monographs, Vol. 29 (Oxford University Press, The Clarendon Press, Oxford, 2003) .

bibitem{7} J. P. Bourguignon and H . B. L awson , textit{Stability and isolation

phenomena for Yang mills fields}, Commun. Math. Phys., $ bf {79}$ (1981), 189-230.

bibitem{8} J. P. Bourguignon and H . B. Lawson , textit{A mathematician's visit to

Kaluza-Klein theory}, Rend. Semin. Mat. Univ. Politec. Torino Special Issue

(1989), 143-163.

bibitem {ud1} U. C. De, K. Matsumoto and A. A. Shaikh, On Lorentzian para-Sasakian manifolds, Rendiconti del Seminario Mat. de Messina 3 (1999),

-156.

bibitem{ud2} U.C. De and A.A. Shaikh, Differential Geometry of Manifolds, Narosa Pub. House (2009).

bibitem{ud3} U.C. De, and A. Sardar, Some results on LP-Sasakian manifolds. Bul-

letin of the Transilvania University of Brasov. Series III: Mathematics and

Computer Science, $ bf {13 (62)}$, (2020), 89-100.

bibitem{10} B. Fuglede, textit{Harmonic morphisms between Riemannian manifolds},

Ann. Inst. Fourier, $ bf {28}$ (1978), 107-144.

bibitem{GW1} S. Gundmundsson and J. C. Wood, textit{Harmonic morphisms between

almost Hermitian manifolds}, Boll. Un. Mat. Ital., $ bf { 11(2)}$ (1997), 185-197.

bibitem{GUNA} Y. Gunduzalp, textit{Anti-invariant Riemannian submersions from

almost product Riemannian manifolds}, Math. Sci. Appl. E Notes, $ bf {1}$ (2013),

-66.

bibitem{15} A. Gray, textit{Pseudo-Riemannian almost product manifolds and

submersions}, J. Math. Mech., $ bf {16}$ (1967), 715-737.

bibitem{16} S. Ianus and M. Visinescu, textit{Kaluza-Klein theory with scalar

fields and generalized Hopf manifolds}, Class. Quantum Gravit., $ bf {4}$ (1987),

-1325.

bibitem{17} S. Ianus and M. Visinescu, textit{Space-time compactication and

Riemannian submersions}, in The Mathematical Heritage of C. F. Gauss, ed . G.

R assias ( World Scientific, River Edge, 1991) 358-371.

bibitem{ss1} S. Kumar, S. Kumar, S. Pandey and R. Prasad, textit{Conformal

hemi-slant submersions from almost Hermitian manifolds}, Commun. Korean.

Math. Soc., $ bf {35}$ (2020), 999-1018.

bibitem{18} S. Kumar, R. Prasad, and P. K. Singh, textit{Conformal semi-slant

submersions from Lorentzian para Sasakian manifolds onto Riemannian

manifolds}, Commun. Korean Math. Soc., $ bf {34(2)}$, (2019), 637-655.

bibitem{sk1} S.Kumar, R. Prasad and S. K. Verma, textit{Conformal semi-slant

submersions from Cosymplectic manifolds}, J. Math. Comput. Sci., $ bf {11(2)}$

(2021), 1323-1354.

bibitem{sk2} S. Kumar, R. Prasad, textit{Conformal anti-invariant Submersions from

Sasakian manifolds}, Glob. J. Pure Appl. Math., $ bf {13(7)}$ (2017), 3577-600.

bibitem{sk3} S. Kumar, A. T. Vanli, S. Kumar and R. Prasad, textit{Conformal quasi

bi-slant submersions}, Analele Stiint. ale Univ. Al Cuza din Iasi - Mat., $ bf {68(2)}$ (2022), 167-184.

bibitem{sk4} S. Kumar and R. Prasad, textit{Conformal anti-invariant submersions from Kenmotsu manifolds onto Riemannian manifolds}, Ital. J. Pure Appl. Math., $ bf {40(1)}$ (2018) 474-500.

bibitem{sk5} S. Kumar, R. Prasad, and A. Haseeb, Conformal semi-slant submersions from Sasakian manifolds. The Journal of Analysis, $bf {31(3)}$ (2023), 1855-1872.

bibitem{km} K. Matsumoto and I. Mihai, textit{On a certain transformation in a

Lorentzian para-Sasakian manifold}, Tensor N. S., $ bf {47}$ (1988), 189-197.

bibitem{20} B. O'Neill, textit{The fundamental equations of a submersion}, Mich.

Math. J., $ bf {13}$ (1966), 458-469.

bibitem{BON} B. O' Neill, textit{Semi-Riemannian Geometry with Applications to

Relativity}, Academic Press, New York, (1983).

bibitem{22} K. S. Park and R. Prasad, textit{Semi-slant submersions}, Bull. Korean

Math. Soc., $ bf {50(3)}$ (2013) 951-962.

bibitem{rk} R. Prasad and S. Kumar, textit{conformal semi-invariant submersions

from almost contact metric manifolds onto Riemannian manifolds}, Khayyam J.

Math. $ bf {5(2)}$ (2019), 77-95.

bibitem{RMPS} R. Prasad, M. A. Akyol, P. K. Singh and S. Kumar, textit{On Quasi

Bi-Slant Submersions from Kenmotsu manifolds onto any Riemannian Manifolds},

J. Math. Ext., $ bf {16(6)}$ (2022), 01-25.

bibitem{rk1} R. Prasad, P. K. Singh and S. Kumar, textit{Conformal semi-slant

submersions from Lorentzian para Kenmotsu manifolds}, Tbil. Math. J., $ bf {14(1)}$ (2021), 191-209.

bibitem{rk2} R. Prasad and S. Kumar, textit{Conformal anti-invariant submersions from nearly K"{a}hler Manifolds}, PJM, $ bf {8(2)}$ (2019), 234-247.

bibitem{rm1} R. Prasad, F. Mofarreh, A. Haseeb and S.K. Vermaa, On quasi bi-slant Lorentzian submersions from LP-Sasakian manifolds. Journal of Mathematics and Computer Science, $ bf {24(3)}$ (2022), 186-200.

bibitem{24} B. Sahin, textit{Slant submersions from Almost Hermitian manifolds}, Bull. Math. Soc. Sci. Math. Roum, $ bf {54(1)}$ (2011), 93-105.

bibitem{ss} B. Sahin, textit{Semi-invariant Riemannian submersions from almost

Hermitian manifolds}, Can. Math. Bull., $ bf {56}$ (2011), 173-183.

bibitem{27} B. Sahin, textit{Anti-invariant Riemannian submersions from almost

Hermitian manifolds}, Open Mathematics, $ bf {8(3)}$ (2010), 437-447.

bibitem{28} H. M. Tastan, B. Sahin and S. Yanan, textit{Hemi-slant submersions}, Mediterr. J. Math., $ bf {13(4)}$ (2016), 2171-2184.

bibitem{HML} H. M. Tastan, textit{Lagrangian submersions}, Hacet. J. Math.

Stat., $ bf {43(6)}$, (2014) 993-1000.

bibitem{29} B. Watson, textit{Almost Hermitian submersions}, J. Differ. Geom.,

$ bf {11(1)}$ (1976), 147-165.




DOI: https://doi.org/10.22190/FUMI230925059K

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)