ON THE GEODESICS AND S-CURVATURE OF A HOMOGENEOUS FINSLER SPACE WITH SQUARE-ROOT (α, β)-METRIC

Milad L. Zeinali, Dariush Latifi

DOI Number
https://doi.org/10.22190/FUMI231104049Z
First page
745
Last page
759

Abstract


In this paper, we consider the square-root (α; β)-metric F which satisfies F (α; β) = √α(α + β). We prove the existence of invariant vector fields on a homogeneous Finsler space with square-root metric. Then we obtain the explicit formula for the S-curvature and mean Berwald curvature of homogeneous Finsler space with square-root metric. We study geodesics and geodesic vectors for homogeneous squareroot (α; β)-metric.


Keywords

homogeneous Finsler space, square-root metric, S-curvature, invariant vector field, geodesic vector, mean Berwald curvature.

Full Text:

PDF

References


H. An and S. Deng: Invariant (α,β)-metric on homogeneous manifolds. Monatsh. Math. 154 (2008), 89-102.

D. Bao, S.S. Chern and Z. Shen: An Introduction to Riemann-Finsler Geometry. Springer, New York (2000).

S. Bochner and D. Montgomery: Locally compact groups of differentiable transformations. Ann. Math. 47 (1946), 639-653.

X. Cheng and Z. Shen: A class of Finsler metrics with isotropic S-curvature. Israel J. Math. 169 (2009), 317-340.

S. S. Chern and Z. Shen: Riemann-Finsler geometry. World Scientific, Nankai Tracts in Mathematics, 6 (2005).

S. Deng: Homogeneous Finsler Spaces. Springer Monographs in Mathematics, NewYork, (2012).

S. Deng and Z. Hou: Invariant Randers metrics on Homogeneous Riemannian manifolds J. Phys. A: Math. General. 37 (2004), 4353-4360; Corrigendum, Ibid, 39 (2006), 5249-5250.

S. Deng and Z. Hou: The group of isometries of a Finsler space. Pacific J. Math. 207 (2002) 149-155.

R.S. Ingarden: On the geometrically absolute optical representation in the electron microscope. Trav. Soc. Sci. Lett. Wrochlaw. Ser. B. 3 (1957), 60.

D. Latifi: Homogeneous geodesics in homogeneous Finsler spaces. J. Geom. Phys. 57 (2007), 1421-1433.

M. Matsumoto: Theory of Finsler spaces with (α; β)-metric. Rep. Math. Phys. 31 (1992), 43-83.

K. Nomizu: Invariant affine connections on homogeneous spaces. Amer. J. Math. 76 (1954), 33-65.

M. Parhizkar, D.Latifi: On the flog curvature of invariant (α; β)-metrics. Int. J. Geom. Methods Mod. Phys. 13 (2016), 1650039, 1-11.

G. Shanker and K. Kaur: Homogeneous Finsler space with infinite series (α; β)-metric. Appl. Sci. 21 (2019), 220-236.

G. Shanker and S. Rani: On S-curvature of a homogeneous Finsler space with square metric. Int. J. Geom. Meth. Mod. Physics. 17(2) (2020), 2050019.

Z. Shen: Volume comparison and its applications in Riemann-Finsler geometry. Adv. Math. 128 (1997), 306-328.




DOI: https://doi.org/10.22190/FUMI231104049Z

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)