A CLASS OF β-KENMOTSU MANIFOLD ADMITTING GENERALIZED TANAKA-WEBSTER CONNECTION
Abstract
investigate some curvature properties in the manifold. Here we study the projective
and ζ-projectively flat curvature tensors admitting the connection ∇e in the manifold.
Further, we discuss recurrent condition, conharmonic curvature tensor and Weyl conformal curvature tensor in the manifold admitting the connection ∇e. Likewise, we
demonstrate Ricci pseudo-symmetric, quasi-concircularly flat and ζ-quasi-concircularly
flat β-Kenmotsu manifold admitting the connection ∇e. Finally, we give an example of
a β-Kenmotsu manifold admitting the connection ∇e which support our results.
Keywords
Full Text:
PDFReferences
M. Ahmad and K. Ali: CR-submanifolds of a nearly hyperbolic Kenmotsu manifold admitting a quarter-symmetric non-metric connection. J. Math. Comput. Sci. 3 (2013), 905–917.
T. Q. Binh: On semi-symmetric connections. Periodica Mathematica Hungarica 21(2) (1990), 101–107.
D. E. Blair: Lectures Notes in Mathematics. Springer-Verlag, Berlin, 509 (1976).
K. De: On a class of β-Kenmotsu manifolds. Facta Universitatis (NIS), Ser. Math. Inform. 29(2) (2014), 173–188.
U. C. De and A. A. Shaikh: Differential Geometry of Manifolds. Narosa Publishing House, New Delhi, (2007).
U. C. De, H. Yangling and K. Mandal: On para-Sasakian manifolds satisfying certain curvature conditions. Filomat 31(7) (2017), 1941–1947.
R. Deszcz: On pseudo-symmetric spaces. Bull. Soc. Belg. Math., Ser A. 44 (1992), 1–34.
G. Ghosh and U. C. De: Kenmotsu manifolds with generalized Tanaka-Webster connection. Publications de l’Institut Mathematique-Beograd 102 (2017), 221–230.
K. Kenmotsu: A class of almost contact Riemannian manifolds. Tohoku Math. Journ. 24 (1972), 93–103.
D. L. Kiran Kumar, M. Uppara and S. Savithri: Study on Kenmotsu manifolds admitting generalized Tanaka-Webster connection. Italian Journal of Pure and Applied Mathematics 46 (2021), 1–8.
D. Narain, A. Prakash and B. Prasad: Quasi-concircular curvature tensor on a Lorentzian para-Sasakian manifold. Bull. Cal. Math. Soc. 101(4) (2009), 387–394.
S. Y. Perktas, B. E. Acet and E. Kilic: Kenmotsu manifolds with generalized Tanaka-Webster connection. Adiyaman University Journal of Science 3 (2013), 79–93.
D. G. Prakasha and B. S. Hadimani: On the conharmonic curvature tensor of Kenmotsu manifolds with generalized Tanaka-Webster connection. Miskolc Mathematical Note 19(1) (2018), 491–503.
B. Prasad and A. Mourya: Quasi-concircular curvature tensor on a Riemannian manifold. News Bull. Cal. Math. Soc. 30(1-3) (2007), 5–6.
A. A. Shaikh and S. K. Hui: On extended generalized ϕ-recurrent β-Kenmotsu manifolds. Publication de l’Institut Mathematique 89(103) (2011), 77–88.
A. A. Shaikh and S. K. Hui: On some classes of generalized quasi-Einstein manifolds. Commun. Korean Math. Soc. 24(3) (2009), 415–424.
R. Takagi: Real hypersurfaces in complex projective space with constant principal curvatures. J. Math. Soc. Japan 27 (1975), 45–53.
N. Tanaka: On non-degenerate real hypersurface, graded Lie algebra and Cartan connections. Japan. J. Math. New Ser. 2 (1976), 131–190.
S. Tanno: The automorphism groups of almost contact Riemannian manifold. Tohoku Math. J. 21 (1969), 21–38.
L. Thangmawia and R. Kumar: Semi-symmetric metric connection on homothetic Kenmotsu manifolds. J. Sci. Res. 12(3) (2020), 223–232.
S. M. Webster: Pseudo-hermitian structures on a real hypersurface. J. Differ. Geom. 13 (1978), 25–41.
K. Yano and M. Kon: Structures on manifolds. Series in Pure Mathematics, 3 (1984).
DOI: https://doi.org/10.22190/FUMI240115022S
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)