ON RICCI SEMI-SYMMETRIC MIXED QUASI-EINSTEIN HERMITIAN MANIFOLD

Mohd Vasiulla, Mohabbat Ali

DOI Number
https://doi.org/10.22190/FUMI240120009V
First page
113
Last page
121

Abstract


The object of the present paper is to study Bochner Ricci semi-symmetric mixed quasi-Einstein Hermitian manifold and holomorphically projective Ricci semisymmetric mixed quasi-Einstein Hermitian manifold.


Keywords

Generalized quasi-Einstein manifold, mixed quasi-Einstein manifold, Bochner curvature tensor, holomorphically projective curvature tensor

Full Text:

PDF

References


A.L. Besse: Einstein manifolds. Ergeb. Math. Grenzgeb. 3. Folge, Bd. 10. Berlin, Heidelberg, New York Springer-Verlag (1987).

B. K. Gupta, B. B. Chaturvedi and M. A. Lone: On Ricci semi-symmetric mixed super quasi-Einstein Hermitian manifold. Differential Geometry-Dynamical Systems 20 (2018), 72–82.

B. B. Chaturvedi and B. K. Gupta: On Bochner Rici semi-symmetric super quasi-Einstein Hermitian manifold. Facta Universitatis. Series: Mathematics and Informatics 38(4) (2023), 793–803.

F. ¨O. Zengin and B. Kirlik: On a special type nearly quasi-Einstein manifold. New Trends in Mathematical Sciences 1(1) (2013), 100–106.

H. G. Nagaraja: On N(k)-mixed quasi-Einstein manifolds. European journal of pure and applied mathematics 1(3) (2010), 16–25.

H. Zhiming, Z. Huazhen and L. Weijun: Several geometric properties on mixed quasi-Einstein manifolds with soliton structures. International Journal of Geometric Methods in Modern Physics 20(10) (2023), 2350164-306.

K. Yano: Differential Geometry of Complex and Almost Complex Spaces. Pergamon Press, New York (1965).

M. Vasiulla, A. Haseeb, F. Mofarreh and M. Ali: Application of mixed generalized quasi-Einstein spacetimes in general relativity. Mathematics 10 (2022) 3749. doi.org/10.3390/math10203749.

M. C. Chaki and R. K. Maity: On quasi-Einstein manifolds. Publ. Math. Debrecen 57 (2000), 297–306.

M. C. Chaki: On generalized quasi-Einstein manifolds. Publ. Math. Debrecen 58 (2001), 683–691.

M. Vasiulla and M. Ali: Generalized quasi-Einstein warped products manifolds with respect to affine connections. Filomat 38(6) (2024) 2061-2077. doi.org/10.2298/FIL2406061V.

M. Bilal, M. Vasiulla, A. Haseeb, A. A. H. Ahmadini and M. Ali: A study of mixed generalized quasi-Einstein spacetimes with applications in general relativity. AIMS Mathematics 8(10) (2023) 3749. doi.org/10.3934/math.20231260.

R. N. Singh, M. K. Pandey and D. Gautam: On nearly quasi-Einstein manifold. Int. Journal of Math. Analysis 36(5) (2011), 1767–1773.

S. Bochner: Curvature and Betti numbers II. Ann. of Math. 50 (1949), 77–93.

S. Mallick, A. Yildiz and U. C. De: Characterizations of mixed quasi-Einstein manifolds. International Journal of Geometric Methods in Modern Physics 14(6) (2017), 1750096.

U. C. De and A. K. Gazi: On nearly quasi-Einstein manifolds. Novi Sad J. Math. 38(2) (2008), 115–121.

U. C. De, S. Mallick and A. Yildiz: Characterizations of mixed quasi-Einstein manifolds. Int. J. Geom. Methods Mod. Phy. 14 (2017), 1750096(14 pages).

U. C. De: Some global properties of mixed quasi-Einstein manifolds. Mathematica Pannonica 23(2) (2012), 277–289.

Y. J. Suha, P. Majhi and U. C. De: On mixed quasi-Einstein spacetimes. Filomat 32(8) (2018), 2707–2719.




DOI: https://doi.org/10.22190/FUMI240120009V

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)