ON CURVATURE TENSORS OBTAINED BY TWO NON-SYMMETRIC LINEAR CONNECTIONS
Abstract
n the cited papers [1, 2, 8, 9, 10, 12, 14], curvature tensors are considered by polylinear mappings, using non-symmetric connections. In the rest of the works from the References, the curvature tensors are obtained by help of Riccy-type identities in local coordinates. In this paper, the problem is considered more generally using polylinear mappings, after which eight curvature tensor fields are obtained. Further, it is proved that among these fields, five of them are independent, while the rest are linear combinations of the cited five fields
Keywords
Full Text:
PDFReferences
Das, L. S., Nivas, R., Ali, S., Ahmad, M., Study of submanifolds immersed in a manifolds with quater symmetric semi symmetric connection, Tensor, N.S, Vol. 65 (2004), 250–260.
Imai, T. Notes on semi-symmetric metric connection, Tensor, N.S, Vol. 24 (1972), 293–296.
Minˇci´c, S. M., Ricci identities in the space of non-symmetric affine connexion, Matematiˇcki Vesnik, 10 (25), Sv. 2, (1973), 161–172.
Minˇci´c, S. M., On curvature tensors and pseudotensors of the space with nonsymmetric affine connection (in Russian), Mathematica balkanica, (1974), 427–430.
Minˇci´c, S. M., Curvature tensors of the space of non-symmetric affine connexion, obtained from the curvature pseudotensors, Matematiˇcki vesnik, 13 (28), (1976), 421–435.
Minˇci´c, S. M., New commutation formulas in the non-symetric affine connexion space, Publ. Inst. Math. (Beograd)(N.S), 22 (36), (1977), 189–199.
Minˇci´c, S. M., Independent curvature tensors and pseudotensors of spaces with nonsymmetric affine connexion, Coll. math. soc. J´anos Bolyai, 31 Dif. geom., Budapest (Hungary), (1979), 445–460.
Minˇci´c, S. M., On curvature tensors of non-symmetric affine connection, Acta et Commentations Universitatis Tartuensis de Mathematica, Vol. 9 (2005), 13–20.
Minˇci´c, S. M., Some characteristics of curvature tensors of nonsymmetric affine connexion, Novi Sad J. Math., 29, No. 3, (1999), 169–186.
Minˇci´c, S. M., Velimirovi´c, Lj. S., Differential geometry of manifolds (in Serbian), Faculty of Science and Mathematics, University of Niˇs, 2011.
Nitescu, C., Bianchi identities in a non symmetric connection space, Bul. Inst. Polit. Iasi, T. XX(XXIV) 1-2, (1974), Sec. 1, Mat. Mec. teor. Fizica.
Prvanovi´c, M., Four curvature tensors of non-symmetric affine connexion (in Russian), Proceedings of the conference “150 years of Lobachevski geometry”, Kazan 1976, Moscow, 1977, 199–205.
Singh, U. P., On relative curvature tensors in the subspace of a Riemannian space, Revne de la Fac. des sci. D’Istambul, Vol. 33 (1968), 69–75.
Yano, K., On semi-symmetric metric connection, Revne Roum. de Math. pures et appl., 15 (1970), 1579–1581.
Yousef, N. Sid-Ahmed, A., Linear connection and curvature tensors of the geometry of parallelisable manifolds, Reports of math. physics, Vol. 60, (2007), No. 1, 39.
DOI: https://doi.org/10.22190/FUMI240122010M
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)