ALMOST SCHOUTEN SOLITONS ON N $N(\kappa)$-CONTACT METRIC MANIFOLDS
Abstract
Keywords
Full Text:
PDFReferences
D. E. Blair: Contact Manifolds in Riemannian Geometry, Lecture Notes in Math., 509, Springer-Verlag 1976.
D. E. Blair, T. Koufogiorgos and B. J. Papantoniou: Contact metric mani- Jolds satisfying a nullity condition, Israel J. Math., 19 (1995), 189-214.
D. E. Blair, T. Koufogiorgos and R. Sharma: A classification of 3-dimensional contact metric manifolds with Q$Phi$= $Phi$Q, Kodai Math.
J., 13 (1990), 391-401.
D. E. Blair and R. Sharma: Three dimensional locally symmetric contact metric manifolds, to appear in Boll. Un. Mat. Ital.
V. Borges: On complete gradient Schouten solitons, Nonlinear Anal., (2022). https://doi.org/10.2016/j.nn.2022.112883
G. Catino and L. Mazzieri: Gradient Einstein solitons, Nonlinear Anal., 132 (2016), 66-94.
U. C. De, A. Yildiz and S. Ghosh: On a class of N(K)-contact metric man ifolds, Math. Reports, 16 (66) (2014), no. 2, 207-217.
U. C. De and A. K. Mondal: 3-dimensional quasi-Sasakian manifolds and Ricci solitons, SUT J. Math., 48 (2012), no. 1, 71-81.
D. Kar, P. Majhi and U. C. De: n-Ricci solitons on 3-dimensional N(K)- contact metric manifolds, Acta Uni. Apu., 54 (2018), 71-88.
T. Mandal: Certain results on N(K)-contact metric manifolds with conformal Ricci solitons, J. Adv. Math. Stud., 14 (2021), no. 3, 343-351.
R. Pina and I. Menezes: Rigidity results on gradient Schouten solitons, arxiv:2010.06729V1 [math.DG] (2020)
A. Sarkar and G. G. Biswas: Ricci solitons on three dimensional generalized Sasakian space forms with quasi Sasakian metric, Afr. Mat., 31 (2020), 455- 463.
A. Sarkar and G. G. Biswas: $star$-Ricci solitons on three dimensional trans-Sasakian manifolds, The Mathematics student, 88, (2019), 153-164.
DOI: https://doi.org/10.22190/FUMI240126011P
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)