ALMOST CONFORMAL RICCI SOLITONS ON LP-SASAKIAN MANIFOLDS

Pradip Majhi, Debabrata Kar

DOI Number
https://doi.org/10.22190/FUMI240220050M
First page
761
Last page
770

Abstract


The object of the present paper is to classify almost conformal Ricci solitons on Lorentzian para-Sasakian manifolds. In this paper, we prove that such manifolds with infinitesimal contact vector field V is η-Einstein and the scalar curvature of the manifold is constant, where V is potential vector field. Moreover, we show that an almost conformal Ricci soliton on Lorentzian para-Sasakian manifold becomes a conformal Ricci soliton and it is shrinking, steady or expanding according as the dimension of the manifold is greater than 3 or equal to 3 or less than 3. Also we prove that V is strictly infinitesimal contact vector field.

Keywords

Ricci solitons, Lorentzian para-Sasakian manifolds, η-Einstein manifold.

Full Text:

PDF

References


N. Basu and A. Bhattacharyya: Conformal Ricci soliton in Kenmotsu manifold. Global Journal of Advanced Research on Classical and Modern Geometries 4(1) (2015), 15–21.

A. M. Blaga: η-Ricci solitons on Lorentzian Para-Sasakian manifolds. Filomat 30(2) (2016), 489–496.

C. Calin and M. Crasmareanu: From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds. Bull. Malays. Math. Soc. 33(3) (2010), 361–368.

T. Chave and G. Valent: On a class of compact and non-compact quasi-Einstein metrics and their renoirmalizability properties. Nuclear Phys. B. 478 (1996), 758–778.

T. Chave and G. Valent: Quasi-Einstein metrics and their renoirmalizability properties. Helv. Phys. Acta. 69 (1996), 344–347.

S. Deshmukh: Jacobi-type vector fields on Ricci solitons. Bull. Math. Soc. Sci. Math. Roumanie 55(103(1)) (2012), 41–50.

S. Deshmukh, H. Alodan and H. Al-Sodais: A Note on Ricci Soliton. Balkan J. Geom. Appl. 16(1) (2011), 48–55.

T. Dutta, N. Basu and A. Bhattacharyya: Almost conformal Ricci solitons on 3-dimensional trans-Sasakian manifold. Hacettepe J. Mat. Stat. 45(5) (2016), 1379–1392.

A. E. Fisher: An introduction to conformal Ricci flow. Class. Quantum Grav. 21(3) (2004), S171–S218.

D. Friedan: Nonlinear models in 2 + ϵ dimensions. Ann. Phys. 163 (1985), 318–419.

A. Ghosh and R. Sharma: Sasakian metric as a Ricci soliton and related results. J. Geom. Phys. 75 (2014), 1–6.

A. Ghosh and D. S. Sharma: The k-almost Ricci solitons and contact geometry. J. Korean. Math. 55(1) (2018), 161–174.

R. S. Hamilton: The Ricci flow on surfaces, Mathematics and general relativity. (Santa Cruz, CA, (1986)), 237–262. Contemp. Math. 71, American Math. Soc. (1988).

R. S. Hamilton: Three manifolds with positive Ricci curvature. J. Differential Geom. 17 (1982), 255–306

T. Ivey: Ricci solitons on compact 3-manifolds. Diff. Geom. Appl. 3 (1993), 301–307.

B. H. Kim: Fibered Riemannian spaces with quasi-Sasakian structures. (Hiroshima Math. J. 20 (1990), 477–513.

P. Majhi and D.Kar: η-Ricci solitons on LP-Sasakian manifolds. Rev. Un. Mat. Argentina 60(2) (2019), 391–405.

K. Matsumoto: On Lorentzian paracontact manifolds. Bull. Yamagata Univ. Natur. Sci. 12 (1989), 151–156.

K. Matsumoto, I. Mihai and R. Rosca: ξ-null geodesic gradient vector fields on a Lorentzian para-Sasakian manifolds. J. Korean Math. Soc. 32 (1995), 17–31.

C. Ozgur: On φ-conformally flat Lorentzian para-Sasakian manifolds. Radovi Matematicki 12 (2003), 99–106.

S. Pigola, M. Rigoli, M. Rimoldi and A. Setti: Ricci almost solitons. Ann. Sc. Norm. Super. Pisa Cl. Sci. 10(5(4)) (2011), 757–799.

R. Sharma: Almost Ricci solitons and K-contact geometry. Monatsh. Math. 175(4) (2014), 621–628.

A. Taleshian and N. Asghari: On LP-Sasakian manifolds satisfying certain conditions on the concircular curvature tensor. Differ. Geom. Dyn. Syst. 12 (2010), 228–232.

Y. Wang: Ricci solitons on 3-dimensional cosympletic manifolds. Math. Slovaca 67(4) (2017), 979–984.

Y. Wang and X. Liu: Ricci solitons on three-dimensional η-Einstein almost Kenmotsu manifolds. Taiwanese Journal of Mathematics, 19(1) (2015), 91–100.




DOI: https://doi.org/10.22190/FUMI240220050M

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)