ON CONFORMALLY FLAT p-POWER (alpha,beta)-METRICS

Mosayeb Zohrehvand, Shahroud Azami, Ghodratallah Fasihi-Ramandi

DOI Number
https://doi.org/10.22190/FUMI240228013Z
First page
171
Last page
183

Abstract


The purpose of this paper is to study the class of conformally flat p-power (alpha,beta)-metrics F = alpha(1 + beta/alpha)^p, where p ̸= 0 is a constant. This metric is interesting, because for p = -1; 1/2; 1; 2 it reduces to the Matsumoto, square-root, Randers, and square metric, respectively. We prove that if a p-power (alpha,beta)-metric has relatively isotropic mean Landsberg curvature, then it is either a Riemannian metric or a locally Minkowski metric.


Keywords

Schouten solitons, metric manifolds, Ricci solitons

Full Text:

PDF

References


M. Amini On conformally flat cubic (alpha, beta)-metrics. J. Finsler Geom. Appl. 2 (2021), 75–85.

P. L. Antonelli and R. S. Ingarden and M. Matsumoto: The theory of

sprays and Finsler spaces with applications in physics and biology. FTPH 58, Kluwer Academic Publishers, 1993.

G. Chen, and X. Cheng: An important class of conformally flat weak Einstein Finsler metrics. Int. J. Math. 24 (2013), 15 pages.

G. Chen and Q. He and Z. Shen: On conformally flat (alpha, beta)-metrics with constant flag curvature. Publ. Math. Debrecen 86 (2015), 351–363.

X. Cheng and H. Li and Y. Zou: On conformally flat (alpha, beta)-metrics with relatively isotropic mean Landsberg curvature. Publ. Math. Debrecen 85 (2014), 131–144.

X. Cheng and Z. Shen: Randers metrics with special curvature properties. Osaka J Math 40 (2003), 87–101.

X. Cheng and Z. Shen: Finsler Geometry: An Approach via Randers Spaces. SpringerLink : Bücher, Springer Berlin Heidelberg, 2013.

X. Cheng and H. Wang and M. Wang: (alpha, beta)-metrics with relatively isotropic mean Landsberg curvature. Publ. Math. Debrecen 72 (2008), 475–485.

S. S. Chern and Z. Shen: Riemann-Finsler Geometry. Singapore, World Scientific, 2005.

Y. Ichijyo and M. Hashuiguchi: On the condition that a Randers space be conformally flat. Rep. Fac. Sci. Kagoshima Univ. 22 (1989), 7–14.

L. Kang: On conformally flat Randers metrics. Sci. Sin. Math. 41 (2011), 439-446.

S. Kikuchi: On the condition that a Finsler space be conformally flat. Tensor (N.S.) 55 (1994), 97–100. Scientia no. 4,

M. S. Knebelman: Conformal geometry of generalised metric spaces. Proc. Natl. Acad. Sci. USA 15 (1929), 376–379.

B. Li and Z. Shen: On a class of weak Landsberg metrics. Science in China Series A 50 (2007), 75–85.

M. Matsumoto: Projective flat Finsler spaces with (alpha, beta)-metric. Rep. Math. Phys. 30 (1991), 15–20.

M. Matsumoto: Conformally Berwald and conformally flat Finsler spaces. Publ. Math. Debrecen 58 (2001), 275–285.

L. I. Piscoran and M. Amini: On conformally flat square-root (alpha, beta)-metrics. J. Finsler Geom. Appl. 2 (2021), 89–102.

G. Randers: On an asymmetric metric in the four-space of general relativity. Phys. Rev. B 59 (1941), 195–199.

H. Rund: The Differential Geometry of Finsler Spaces. Berlin, Springer-Verlag, 1959.

H. Shimada and S. V. Sabau: Introduction to Matsumoto metric. Nonlinear Analy.: Theo., Math. and Appl. 63 (2005), 165–168.

A. Tayebi and M. Amini: Conformally flat 4-th root (alpha, beta)-metrics with relatively isotropic mean Landsberg curvature. Math. Analysis. Convex. Optimization 1 (2020), 25–34.

A. Tayebi and B. Najafi: On m-th root metrics with special curvature properties. C. R. Acad. Sci. Paris, Ser. I. 349 (2011), 691–693.

A. Tayebi and M. Razgordani: On conformally flat fourth root (alpha, beta)-metrics. Differential Geom. Appl. 62 (2019), 253–266.

G. Yang: On a class of Einstein-reversible Finsler metrics. Differ. Geom. Appl. 60 (2018), 80–103.




DOI: https://doi.org/10.22190/FUMI240228013Z

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)