ON GENERALIZED FRAMED AND FRENET-TYPE FRAMED BERTRAND CURVES IN EUCLIDEAN 3-SPACE
Abstract
In this paper, we consider Framed and Frenet-type Framed Bertrand curves. We generalized the notion of Framed and Frenet-type Framed Bertrand curves in Euclidean 3-space. According to this generalization, the Bertrand curve conditions of a given Framed and Frenet-type Framed Bertrand curves are obtained and the relations between the moving frames and curvature functions are given.
Keywords
Full Text:
PDFReferences
H. Balgetir, M. Bektas¸ and J. Inoguchi:Null Bertrand curves in Minkowski 3-space and their characterizations. Note Mat. 23 ( no. 1)(2004/05), 7-13.
J. M. Bertrand: M´emoire sur la th´eorie des courbes ´a double courbure. Comptes Rendus. 36 (1850).
D. Demir and K. ˙Ilarslan: On Generalized Bertrand curves in Euclidean 3-space. Facta Uni. Ser. Math. Inform. Vol. 38( no.1) (2023), 199-208.
N. Ekmekci and K. ˙Ilarslan: On Bertrand curves and their characterization. Differ. Geom. Dyn. Syst. 3(2) (2001), 17-24.
T. Fukunaga and M. Takahashi: Existence conditions of framed curves for smooth curves. Journal of Geometry, 108 (2017), 763-774.
S. Honda and M. Takahashi: Framed curves in the Euclidean space. Advances in Geometry. 16(3)(2016), 265-276.
S. Honda and M. Takahashi: Bertrand and Mannheim curves of framed curves in the 3-dimensional Euclidean space. Turk. J. Math. 44 (2020), 883-899.
S. Honda, M. Takahashi and H. Yu:Bertrand and Mannheim curves of framed curves in the 4-dimensional Euclidean space. Journal of Geometry, (2023), 114:12.
B. D. Yazıcı, S. ¨ O. Karakus¸ and M. Tosun: Framed normal curves in Euclidean space. Tbilisi Mathematical Journal, (2020), 27-37.
M. Mak: Framed clad helices in Euclidean 3-space. Filomat, 37 (no. 28) (2023), 9627-9640.
B. D. Yazıcı, O. Z. Okuyucu and M. Tosun: On special singular curve couples of framed curves in 3D Lie groups. Common Fac. Scı. Univ. Ank. Ser. A1. Math. Stat. 72(no. 3) (2023), 710-720.
B. D. Yazıcı, S. ¨ O. Karakus¸ and M. Tosun: On adjoint curves of framed curves and some ruled surfaces. Honam Math. J. 45(3)(2023), 380-396.
B. D. Yazıcı, S. ¨ O. Karakus¸ and M. Tosun: Framed Curves and Their Applications Based on a New Differential Equation. Int. Electron. J. Geom. 15(1)(2022), 47-56.
W. Kuhnel: Differential geometry: curves-surfaces-manifolds. Braunschweig, Wiesbaden, 1999.
A. Uc¸um, K. ˙Ilarslan and M. Sakaki: On (1, 3)-Cartan Null Bertrand curves in Semi-Euclidean 4-Space with index 2. Journal of Geometry, 107 (3) (2016), 579-591.
A. Uc¸um, O. Kec¸ilio˘glu and K. ˙Ilarslan: Generalized Pseudo Null Bertrand curves in Semi-Euclidean 4-Space with index 2. Rendiconti del Circolo Matematico di Palermo Series 2 ,65(3)(2016), 459-472.
A. Uc¸um, O. Kec¸ilio˘glu and K. ˙Ilarslan: Generalized Bertrand curves with spacelike (1, 3)-normal plane in Minkowski space-time. Turk. J. Math. 40 (2016), 487-505.
A. Uc¸um, O. Kec¸ilio˘glu and K. ˙Ilarslan: Generalized Bertrand curves with timelike (1, 3)-normal plane in Minkowski space-time. Kuwait J. Sci. 42 (2015), 10-27.
A. Uc¸um and K. ˙Ilarslan: On timelike Bertrand Curves in Minkowski 3-space.Honam Math. J.38(3)(2016), 467–477.
Y. Wang, D. Pei and R Gao: Generic properties of framed rectifying curves. Mathematics. 7(37) (2019).
B. Saint Venant: M´emoire sur les lignes courbes non planes. Journal de l’Ecole Polytechnique. 18 (1845), 1-76.
C. Zhang and D. Pei: Generalized Bertrand curves in Minkowski 3-space. Mathematics. 8 (2020), 2199.
DOI: https://doi.org/10.22190/FUMI240301014A
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)