DEFORMATION OF SASAKIAN METRIC AS A YAMABE SOLITON

M. Prabhakar, H. G. Nagaraja

DOI Number
https://doi.org/10.22190/FUMI240326025P
First page
343
Last page
353

Abstract


In this paper we investigate Yamabe solitons on deformed Sasakian manifolds. We proved that the Yamabe soliton constant is invariant under new deformation of contact manifolds that deforms metric and structure tensor simultaneously. Further we show that the scalar curvature is equal to the soliton constant and potential vector field of Yamabe soliton reduces to an affine vector field.


Keywords

deformation, Yamabe soliton, Sasakian metric, projective vector field, affine vector field.

Full Text:

PDF

References


E. Barbosa and E. Ribeiro Jr.: On conformal solution of the Yamabe flow. Arch. Math. 101(1) (2013), 79–89.

G. Beldjilali and M. A. Akyol: On a certain transformation in almost contact metric manifolds. Facta Universitatis, Series: Mathematics and Informatics 36(2) (2021), 365–375.

B. Benaoumeur and B. Gherici : Ricci solitons on Sasakian manifolds under a new deformation. Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science 1(63) (2021), 15–28.

H. Bouzir and G. Beldjilali: Kahlerian structure on the product of two transSasakian manifolds. Int. Electron. J. Geom. 13(2) (2020), 135–143.

A. Burchard, R. J. McCann and A. Smith: On a certain transformation in almost contact metric manifolds. Facta Universitatis, Series: Mathematics and Informatics 18(5) (2008), 65–80.

B. Y. Chen and S. Deshmukh: Yamabe and quasi-Yamabe solitons on Euclidean submanifolds. Facta Universitatis, Series: Mathematics and Informatics 15 (2018), 1–9.

K. De and U. C. De: δ-Almost Yamabe solitons in paracontact metric manifolds. Mediterr. J. Math. 18(5), 218 (2021).

K. De, U. C. De and A. Gezer: Perfect fluid spacetimes and k-almost Yamabe solitons. Turk J Math. 47 (2023), 1236–1246.

U. C. De and S. K. Chaubey: Perfect fluid space times and Yamabe solitons. J. Math. Phys. 62, 032501 (2021).

U. C. De and Y. J. Suh: Yamabe and quasi-Yamabe solitons in paracontact metric manifolds. Int. J. Geom. Methods Mod. Phys. 18(12), 2150196 (2021).

R. S. Hamilton: The Ricci flow on surfaces, Mathematics and general relativity. Contemp. Math. 71 (1988), 237–261.

S. Kundu: On Yamabe Soliton. Irish Math. Soc. Bulletin 77 (2016), 51–60.

H. G. Nagaraja and R. Sharma: D-homothetically deformed K-contact Ricci almost solitons. Results in Mathematics 75(3), 124 (2020).

A. Romero and M. Sanchez: Projective vector fields on Lorentzian manifolds. Geometriae Dedicata 93 (2002), 95–105.

S. Roy, S. Dey and A. Bhattacharyya: Some results on η-Yamabe Solitons in 3-dimensional trans-Sasakian manifold. arXiv preprint arXiv:2001.09271, (2020).

S. Roy, S. Dey and A. Bhattacharyya: Yamabe Solitons on (LCS)n -manifolds. Journal of Dynamical Systems and Geometric Theories 18(2) (2020), 261–279.

R. Sharma: A 3-dimensional Sasakian metric as a Yamabe soliton. Int. J. Geom. Methods Mod. Phys. 9(4) (2012), 1–5.

Y. J. Suh and U. C. De: Yamabe solitons and Ricci solitons on almost co-Kahler manifolds. Canad. Math. Bull. 62(3) (2019), 653–661.

K. Yano: Integral formulas in Riemannian geometry. Marcel Dekker Vol. 1 (1970).




DOI: https://doi.org/10.22190/FUMI240326025P

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)