HARMONIC MAPS ON COTANGENT AND UNIT COTANGENT BUNDLES

Murat Altunbas

DOI Number
https://doi.org/10.22190/FUMI240326027A
First page
365
Last page
373

Abstract


Let (M; g) be an n-dimensional Riemannian manifold and (T∗M; g~) be its cotangent bundle with a metric ~ g that generalizes Sasaki and Cheeger-Gromoll metrics. In this paper, we investigate the harmonicity of the canonical projection π : (T∗M; g~) ! (M; g); the harmonicity of 1-forms regarded as maps σ : (M; g) ! (T∗M; g~) and the harmonicity of the identity maps I1 : (T∗M; g~) ! (T∗M;S g) and I2 : (T∗M;S g) ! (T∗M; g~); where Sg is the Sasaki metric. Moreover, we consider same problems on the unit cotangent bundle T1∗M.


Keywords

Riemannian manifold, cotangent bundle, Sasaki metrics, Cheeger-Gromoll metrics, harmonic maps.

Full Text:

PDF

References


S. Akbulut, M. Ozdemir and A. Salimov: Diagonal lift in the cotangent bundle and its applications. Turk. J. Math. 25 (2001), 491-502.

M. Anastasie: Locally conformal Kaehler structures on tangent bundle of a space form. Libertas Math. 19 (1999), 71-76.

J. Cheeger and D. Gromoll: On the structure of complete manifolds of nonnegative curvature. Ann. of Math. 96 (1972), 413-443.

B. Y. Chen and T. Nagano: Harmonic metrics, harmonic tensors and Gauss maps. J. Math. Soc. Japan 36(2) (1984), 295-313.

J. Eells and L. Lemaire: Selected topics in harmonic maps. Conf. Board of the Math. Sci. A.M.S. 50, Providince (1983).

A. Gezer and M. Altunbas¸: Notes on the rescaled Sasaki type metric on the cotangent bundle. Acta Math. Sci. 34B(1) (2014), 162-174.

A. Gezer and M. Altunbas: On the rescaled Riemannian metric of Cheeger-Gromoll type on the cotangent bundle.Hacettepe J. Math. Stat. 45(2) (2016), 355-365.

S. Ishihara: Harmonic sections of tangent bundles. J. Math. Tokushima Univ. 13 (1979), 23-27.

M. I. Munteanu: Some aspects on the geometry of the tangent bundles and tangent sphere bundles of a Riemannian manifold. Mediterr. J. Math. 5(1) (2008), 43-59.

E. Musso and F. Tricerri: Riemannian metrics on tangent bundles. Ann. Mat. Pur. Appl. 150(4), (1988), 1-19.

F. Ocak: g-natural metrics on the cotangent bundle. Int. Elec. J. Geo. 6(1) (2013), 129-146.

C. Oniciuc: On the harmonic sections of tangent bundles. An. Univ. Bucuresti 47(1) (1998), 67-72.

C. Oniciuc: Tangent bundles and harmonicity. Ann. Sti. Ale. Uni. "Al. I. Cuza" Iasi XLIII(1) (1997), 151-172.

V. Opriou: On harmonic sections of cotangent bundles. Rendiconti Sem. Fac. Sci. Uni. Cagliari 59(2) (1989), 177-184.

V. Opriou and N. Papaghiuc: Some results on harmonic sections of cotangent bundles. Ann. Stiint. Univ. "Al. I. Cuza" Iasi 45 (1999), 275-290.

A. A. Salimov and F. Agca: Some properties of Sasakian metrics in cotangent bundles. Mediterr. J. Math. 8 (2010), 243-255.

A. A. Salimov and S. Kazimova: Geodesics of the Cheeger-Gromoll Metric. Turk. J. Math. 33(1) (2009), 99-105.

S. Sasaki: On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Math. J. 10 (1958), 338-358.

K. Yano and S. Ishihara: Tangent and cotangent bundles, Marcel Dekker Inc., New York (1973).




DOI: https://doi.org/10.22190/FUMI240326027A

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)