SOME CONSTRUCTIONS OF PROJECTIVELY RELATED SPHERICALLY SYMMETRIC FINSLER METRICS
Abstract
Keywords
Full Text:
PDFReferences
S-I. Amari and H. Nagaoka: Methods of Information Geometry. AMS Translation of Math. Monographs, Oxford University Press (2000).
M. Gabrani: On a class of Finsler metrics of scalar flag curvature defined by the Euclidean metric and related 1-forms. J. Finsler Geom. Appl. 2(1) (2021), 118–131.
E. Guo, H. Liu and X. Mo: On spherically symmetric Finsler metrics with isotropic Berwald curvature. Int. J. Geom. Methods Mod. Phys. 10 (2013), 1350054.
L. Huang and X. Mo: On spherically symmetric Finsler metrics of scalar curvature. J. Geom. Phys. 62(11) (2012), 2279–2287.
X. Mo, N. M. Solorzano and K. Tenenblat: On spherically symmetric Finsler metrics with vanishing Douglas curvature. Diff. Geom. Appl. 31(6) (2013), 746–758.
X. Mo and L. Zhou: The curvatures of spherically symmetric Finsler metrics in Rn. arXiv:1202.4543.
A. Rapcsak: Uber die bahntreuen Abbildungen metrisher Raume. Publ. Math. Debrecen 8 (1961), 285–290.
S.F. Rutz: Symmetry in Finsler spaces. Contemp. Math. 196 (1996), 289–300.
H. Sadeghi and M. Bahadori: On projectively related spherically symmetric metrics in Finsler geometry. J. Finsler Geom. Appl. 1(2) (2020), 39–53.
Z. Shen: Riemann-Finsler geometry with applications to information geometry. Chin. Ann. Math. 27 (2006), 73–94.
A. Tayebi, M. Bahadori and H. Sadeghi: On spherically symmetric Finsler metrics with some non-Riemannian curvature properties. J. Geom. Phys. 163 (2021), 104125.
A. Tayebi and F. Barati: On L-reducible spherically symmetric Finsler metrics. Differ. Geom. Appl. 90 (2023), 102028.
L. Zhou: Projective spherically symmetric Finsler metrics with constant flag curvature in R^n. Geom. Dedicata 158 (2012), 353–364.
L. Zhou: Spherically symmetric Finsler metrics in Rn, Publ. Math. Debrecen 80 (2012), 1–11.
DOI: https://doi.org/10.22190/FUMI240512031T
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)