SOME CONSTRUCTIONS OF PROJECTIVELY RELATED SPHERICALLY SYMMETRIC FINSLER METRICS

Akbar Tayebi, Behzad Najafi

DOI Number
https://doi.org/10.22190/FUMI240512031T
First page
411
Last page
419

Abstract


The class of spherically symmetric Finsler metrics forms a rich and important class of Finsler metrics. In this paper, for an arbitrary spherically symmetric Finsler metric, we construct four classes of Finsler metrics which are projectively related to it.

Keywords

Finsler metrics, spherically symmetric Finsler metrics.

Full Text:

PDF

References


S-I. Amari and H. Nagaoka: Methods of Information Geometry. AMS Translation of Math. Monographs, Oxford University Press (2000).

M. Gabrani: On a class of Finsler metrics of scalar flag curvature defined by the Euclidean metric and related 1-forms. J. Finsler Geom. Appl. 2(1) (2021), 118–131.

E. Guo, H. Liu and X. Mo: On spherically symmetric Finsler metrics with isotropic Berwald curvature. Int. J. Geom. Methods Mod. Phys. 10 (2013), 1350054.

L. Huang and X. Mo: On spherically symmetric Finsler metrics of scalar curvature. J. Geom. Phys. 62(11) (2012), 2279–2287.

X. Mo, N. M. Solorzano and K. Tenenblat: On spherically symmetric Finsler metrics with vanishing Douglas curvature. Diff. Geom. Appl. 31(6) (2013), 746–758.

X. Mo and L. Zhou: The curvatures of spherically symmetric Finsler metrics in Rn. arXiv:1202.4543.

A. Rapcsak: Uber die bahntreuen Abbildungen metrisher Raume. Publ. Math. Debrecen 8 (1961), 285–290.

S.F. Rutz: Symmetry in Finsler spaces. Contemp. Math. 196 (1996), 289–300.

H. Sadeghi and M. Bahadori: On projectively related spherically symmetric metrics in Finsler geometry. J. Finsler Geom. Appl. 1(2) (2020), 39–53.

Z. Shen: Riemann-Finsler geometry with applications to information geometry. Chin. Ann. Math. 27 (2006), 73–94.

A. Tayebi, M. Bahadori and H. Sadeghi: On spherically symmetric Finsler metrics with some non-Riemannian curvature properties. J. Geom. Phys. 163 (2021), 104125.

A. Tayebi and F. Barati: On L-reducible spherically symmetric Finsler metrics. Differ. Geom. Appl. 90 (2023), 102028.

L. Zhou: Projective spherically symmetric Finsler metrics with constant flag curvature in R^n. Geom. Dedicata 158 (2012), 353–364.

L. Zhou: Spherically symmetric Finsler metrics in Rn, Publ. Math. Debrecen 80 (2012), 1–11.




DOI: https://doi.org/10.22190/FUMI240512031T

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)