GRADIENT $\rho$-EINSTEIN SOLITONS AND APPLICATIONS

Sinem Güler, Bulent Ünal

DOI Number
https://doi.org/10.22190/FUMI240813018G
First page
233
Last page
248

Abstract


In this paper, we mainly study gradient $\rho$-Einstein solitons on doubly warped product manifolds. More explicitly, we obtain necessary and sufficient conditions for a doubly warped product manifold to be a gradient $\rho$-Einstein soliton. We also apply our main result to warped product spacetime models such as generalized Robertson-Walker and standard static spacetimes as well as 3-dimensional Walker manifolds. We finally establish that there is no 3-dimensional essentially conformally symmetric gradient $\rho$-Einstein soliton.


Keywords

manifolds, $\rho$-Einstein soliton, Ricci solution

Full Text:

PDF

References


D. E. Allison: Energy conditions in standard static spacetimes. General Relativity and Gravitation, 20 (1988), 115–122.

D. E. Allison: Geodesic Completeness in Static Spacetimes, Geometriae Dedicata 26 (1988), 85–97.

D. E. Allison and B. ¨Unal: Geodesic Structure of Standard Static Spacetimes. J. Geo. Phys. 46 (2003), 193–200.

A. L. Besse: Einstein Manifolds. Classics in Mathematics, Springer-Verlag, Berlin, 2008.

R. L. Bishop and B. O’Neill: Manifolds of negative curvature. Trans. Amer. Math. Soc. 145, (1969), 1–49.

A. M. Blaga: Solitons and geometrical structures in a perfect fluid spacetime. Rocky Mountain J. Math. 50 (1) 41–53, (2020), https://doi.org/10.1216/rmj.2020.50.41

A. M. Blaga and H. M. Tas¸tan: Some results on almost η-Ricci-Bourguignon solitons. J. Geom. Phys., 168, (2021), Paper No. 104316, 9 pp.

A. M. Blaga and H. M. Tas¸tan: Gradient solitons on doubly warped product manifolds. Reports on Mathematical Physics, 89(3), (2022), 319–333.

J.-P.Bourguignon: Ricci curvature and Einstein metrics. Global differential geometry and global analysis (Berlin, 1979), Lecture Notes in Math., vol. 838, Springer, Berlin, 1981, pp. 42–63.

S. Brendle: Convergence of the Yamabe flow in dimension 6 and higher. Invent. Math., 170 (3) (2007), 541–576.

E. Calvino-Louzao, E. Garcia-Rio, J. Seoane-Bascoy and R. Vazquez-Lorenzo: Three-dimensional conformally symmetric manifolds. Annali di Matematica, 193, (2014), 1661–1670.

G. Catino, Giovanni, L. Cremaschi, Z. Djadli, C. Mantegazza, and L. Mazzieri: The Ricci-Bourguignon flow. Pac. J. Math. 287(2), (2017), 337–370.

G. Catino and L. Mazzieri: Gradient Einstein solitons. Nonlinear Anal., 132, (2016), 66–94.

G. Catino, L. Mazzieri and S. Mongodi: Rigidity of gradient Einstein shrinkers. Commun. Contemp. Math. 17(6), (2015), 1550046, 18 pp.

M. Chaichi, E. Garcia-Rio and M. E. Vazquez-Abal: Three-dimensional Lorentz manifolds admitting a parallel null vector field. J. Phys. A: Math. Gen., 38, (2005), 841–850.

B.-Y. Chen: A simple characterization of generalized Robertson-Walker spacetimes. Gen. Relativ. Gravit. 46 (2014), 18–33.

B.-Y. Chen: Differential geometry of warped product manifolds and submanifolds. World Scientific, 2017.

J. T. Cho and M. Kimura: Ricci solitons and real hypersurfaces in a complex space form. Tohoku Math. J. 61(2) (2009), 205–212.

K. De and U. C. De: Investigations on solitons in f(R)-gravity. Eur. Phys. J. Plus 137, 180 (2022). https://doi.org/10.1140/epjp/s13360-022-02399-y

A. Derdzinski and W. Roter: Projectively flat surfaces, null parallel distributions, and conformally symmetric manifolds. Tohoku Math. J. 59, (2007), 565–602

A. Derdzinski and W. Roter: The local structure of conformally symmetric manifolds. Bull. Belg. Math. Soc. Simon Stevin 16, (2009), 117–128.

S. Dwivedi: Some results on Ricci-Bourguignon solitons and almost solitons. Can. Math. Bull. 64(3), (2021), 591–604.

P. E. Ehrlich: Metric deformations of Ricci and sectional curvature on compact Riemannian manifolds. Ph.D.dissertation, SUNY, Stony Brook, N.Y., 1974.

A. Gebarowski: Doubly warped products with harmonic Weyl conformal curvature tensor. Colloq. Math. 67,(1995), 73–89.

A. Gebarowski: On conformally recurrent doubly warped products. Tensor (N.S.), 57, (1996), 192–196.

Z. Fathi and S. Lakzian: Bakry-Emery Ricci Curvature Bounds for Doubly Warped Products of Weighted Spaces. J. Geom. Anal. 32, 79 (2022). https://doi.org/10.1007/s12220-021-00745-7

S. G¨uler and M. Crasmareanu: Ricci-Yamabe maps for Riemannian flows and their volume variation and volume entropy. Turkish J. Math, 43, (2019), 2631–2641.

S. G¨uler and B. ¨Unal: The Existence of Gradient Yamabe Solitons on Spacetimes. Results Math, 77(5), (2022), 206–224.

P. Gupta: On compact Einstein doubly warped product manifolds. Tamkang Jour. Math. 49 (2018), no.1, 267–275.

R.S. Hamilton: The Ricci flow on surfaces, in: Mathematics and General Relativity. Contemp. Math., 71, (1988), 237–262.

P. T. Ho: On the Ricci-Bourguignon flow. Int. J. Math. 31(6), (2020), 2050044, 40 pp.

G. Huang: Integral pinched gradient shrinking gradient ρ-Einstein solitons. J. Math. Anal. Appl., 451(2), (2017), 1045–1055.

C. A. Mantica, L. G. Molinari and U. C. De: A condition for a perfect fluid spacetime to be a generalized Robertson-Walker spacetime. J. Math. Phys. 57 (2) (2016), 022508.

C. A. Mantica , Y. J. Suh and U. C. De: A note on generalized Robertson-Walker spacetimes. Int. J. Geom. Meth. Mod. Phys. 13 (2016), 1650079.

C. K. Mondal Chandan Kumar and A. A. Shaikh: Some results in η-Ricci soliton and gradient ρ-Einstein soliton in a complete Riemannian manifold. Commun. Korean Math. Soc. 34(4), (2019), 1279–1287.

B. O’Neill: Semi-Riemannian Geometry with Applications to Relativity. Academic Press Limited, London, 1983.

R. Pina and I. Menezes: On gradient Schouten solitons conformal to a pseudo-Euclidean space. Manuscripta Math., 163(3-4), (2020), 395–406.

M. S´anchez: On the Geometry of Generalized Robertson-Walker Spacetimes: geodesics. Gen. Relativ. Gravitation 30 (1998), 915–932.

M. S´anchez: On the Geometry of Generalized Robertson-Walker Spacetimes: Curvature and Killing fields. J. Geom. Phys. 31 (1999), 1–15.

S. Shenawy and B. ¨Unal: 2−Killing vector fields on warped product manifolds. International Journal of Mathematics, 26 (2015), 1550065

N. B. Turki, S. Shenawy, H. K. EL-Sayied, N. Syied and C. A. Mantica: gradient ρ-Einstein Solitons on Warped Product Manifolds and Applications. J. Math. 2022, Article ID 1028339, 10 pages, 2022.

A. G. Walker: Canonical form for a Riemannian space with a parallel field of null planes. Quart. J. Math. Oxford, 21, (1950), 69–79.

B. ¨Unal: Doubly warped products. Diff. Geom. Appl., 15(3), (2001), 253–263.

R. Ye: Global existence and convergence of Yamabe flow. J. Diff. Geom., 39(1), (1994), 35–50.




DOI: https://doi.org/10.22190/FUMI240813018G

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)