DEFORMATIONS PRESERVING DUAL ARC LENGTH IN DUAL 3-SPACE
Abstract
Keywords
Full Text:
PDFReferences
R. A. Abdel-Baky: An explicit characterization of dual spherical curve. Commun. Fac. Sci. Univ. Ank. Series A1 51(2) (2002), 1–9.
R. A. Abdel-Baky and M. K. Saad: Some characterizations of dual curves in dual 3-space D3. AIMS Mathematics 6(4) (2021), 3339–3351.
H. W. Guggenheimer: Differential geometry. Dover publications, Inc., New York (1977).
Y. Li and D. Pei: Evolutes of dual spherical curves for ruled surfaces. Math. Meth. Appl. Sci. 39 (2016) 3005-3015.
M. S. Najdanović: Characterizacion of dual curves using the theory of infinitesimal bending. Math. Meth. Appl. Sci. 47 (2024), 8626-8637.
M. Onder and H. H. Ugurlu: Normal and Spherical Curves in Dual Space D3. Mediterr. J. Math. 10 (2013), 1527-1537.
E. Study: Geometrie der Dynamen. Leipzig (1903).
G. R. Veldkamp: On the Use of Dual Numbers, Vectors and Matrices in Instantaneous, Spatial Kinematics. Mechanism and Machine Theory 11 (1976), 141–156.
A. Yucesan , N. Ayyildiz and A. C. Coken : On rectifying Dual Space Curves. Rev. Mat. Complut. 20(2) (2007), 497–506.
A. Yucesan and G. O. Tukel: Dual Spherical Elastica. Filomat 37(8) (2023), 2483-2493.
DOI: https://doi.org/10.22190/FUMI240905060N
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)