DEFORMATIONS PRESERVING DUAL ARC LENGTH IN DUAL 3-SPACE

Marija S. Najdanović, Ljubica S. Velimirović, Svetozar R. Rančić

DOI Number
https://doi.org/10.22190/FUMI240905060N
First page
891
Last page
897

Abstract


In this paper we study infinitesimal bending of dual spherical curves using the Blaschke frame. We give the necessary and sufficient conditions for the infinitesimal bending field. Also, we consider the hyperbolic paraboloid as a ruled surface corresponding to a dual spherical curve.

Keywords

dual spherical curves, infinitesimal bending field, Blaschke frame.

Full Text:

PDF

References


R. A. Abdel-Baky: An explicit characterization of dual spherical curve. Commun. Fac. Sci. Univ. Ank. Series A1 51(2) (2002), 1–9.

R. A. Abdel-Baky and M. K. Saad: Some characterizations of dual curves in dual 3-space D3. AIMS Mathematics 6(4) (2021), 3339–3351.

H. W. Guggenheimer: Differential geometry. Dover publications, Inc., New York (1977).

Y. Li and D. Pei: Evolutes of dual spherical curves for ruled surfaces. Math. Meth. Appl. Sci. 39 (2016) 3005-3015.

M. S. Najdanović: Characterizacion of dual curves using the theory of infinitesimal bending. Math. Meth. Appl. Sci. 47 (2024), 8626-8637.

M. Onder and H. H. Ugurlu: Normal and Spherical Curves in Dual Space D3. Mediterr. J. Math. 10 (2013), 1527-1537.

E. Study: Geometrie der Dynamen. Leipzig (1903).

G. R. Veldkamp: On the Use of Dual Numbers, Vectors and Matrices in Instantaneous, Spatial Kinematics. Mechanism and Machine Theory 11 (1976), 141–156.

A. Yucesan , N. Ayyildiz and A. C. Coken : On rectifying Dual Space Curves. Rev. Mat. Complut. 20(2) (2007), 497–506.

A. Yucesan and G. O. Tukel: Dual Spherical Elastica. Filomat 37(8) (2023), 2483-2493.




DOI: https://doi.org/10.22190/FUMI240905060N

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)