NEW EXAMPLES OF GEODESIC ORBIT NILMANIFOLDS
Abstract
Keywords
Full Text:
PDFReferences
I. Agricola, A. C. Ferreira and T. Friedrich: The classification of naturally reductive homogeneous spaces in dimensions n ≤ 6. Differential Geom. Appl. 39 (2015), 52–92.
I. Agricola, A. C. Ferreira and R. Storm: Quaternionic Heisenberg groups as naturally reductive homogeneous spaces. Int. J. Geom. Methods Mod. Phys. 12(8) (2015), Article ID 1560007, 10 pp.
D. V. Alekseevsky and A. Arvanitoyeorgos: Riemannian flag manifolds with homogeneous geodesics. Trans. Amer. Math. Soc. 359 (2007), 3769–3789.
D. V. Alekseevsky and Yu. G. Nikonorov: Compact Riemannian manifolds with homogeneous geodesics. SIGMA Symmetry Integrability Geom. Methods Appl. 5 (2009), Article ID 093, 16 pp.
D. N. Akhiezer and E. B. Vinberg: Weakly symmetric spaces and spherical varieties. Transform. Groups 4 (1999), 3–24.
A. Arvanitoyeorgos: Homogeneous manifolds whose geodesics are orbits. Recent results and some open problems. Irish Math. Soc. Bulletin 79 (2017), 5–29.
V. N. Berestovskii and Yu. G. Nikonorov: Clifford – Wolf homogeneous Riemannian manifolds. J. Differential Geom. 82(3) (2009), 467–500.
V. N. Berestovskii and Yu. G. Nikonorov: Generalized normal homogeneous Riemannian metrics on spheres and projective spaces. Ann. Global Anal. Geom. 45(3) (2014), 167–196.
V. N. Berestovskii and Yu. G. Nikonorov: On δ-homogeneous Riemannian manifolds. Differential Geom. Appl. 26(5) (2008), 514–535.
V. N. Berestovskii and Yu. G. Nikonorov: Riemannian manifolds and homogeneous geodesics. Springer Monographs in Mathematics. Springer, Cham. (2020).
J. Berndt, O. Kowalski and L. Vanhecke: Geodesics in weakly symmetric spaces. Ann. Global Anal. Geom. 15 (1997), 153–156.
J. Berndt, F. Ricci and L. Vanhecke: Weakly symmetric groups of Heisenberg type. Differ. Geom. Appl. 8(3) (1998), 275–284.
A. L. Besse: Einstein Manifolds. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo (1987).
Z. Chen, Y. Nikolayevsky and Yu. G. Nikonorov: Compact geodesic orbit spaces with a simple isotropy group. Annals of Global Analysis and Geometry 63(1) (2023), Paper No. 7, 34 pp.
Z. Chen and Yu. G. Nikonorov: Geodesic orbit Riemannian spaces with two isotropy summands. I. Geometriae Dedicata 203 (2019), 163–178.
Z. Chen, J. A. Wolf and S. Zhang: On the geodesic orbit property for Lorentz manifolds. J. Geom. Anal. 32(3) (2022), Paper No. 81, 14 pp.
J. E. D’Atri and W. Ziller: Naturally reductive metrics and Einstein metrics on compact Lie groups. Memoirs Amer. Math. Soc. 19 (1979), no. 215.
V. del Barco: Homogeneous geodesics in pseudo-Riemannian nilmanifolds. Adv. Geom. 16(2) (2016), 175–187.
Z. Dušek: Geodesic graphs in Randers g.o. spaces. Comment. Math. Univ. Carolin. 61 (2020), 195–211.
Z. Dušek: Homogeneous geodesics and g.o. manifolds. Note Mat. 38 (2018), 1–15.
Z. Dušek, O. Kowalski and S. Nikčević: New examples of Riemannian g.o. manifolds in dimension 7. Differential Geom. Appl. 21 (2004), 65–78.
P. Eberlein: Central conjugate locus of 2-step nilpotent Lie groups. Math. Z. 287(3–4) (2017), 1215–1233.
P. Eberlein: Geometry of 2-step nilpotent groups with a left invariant metric. Ann. Sci. l’Ecole Norm. Sup. ´ 27(4(5)) (1994), 611–660.
P. Eberlein: Geometry of 2-step nilpotent groups with a left invariant metric. II. Trans. Amer. Math. Soc. 343(2) (1994), 805–828.
K. Furutani and I. Markina: Automorphism groups of pseudo H-type algebras. J. Algebra 568 (2021), 91–138.
K. Furutani and I. Markina: Complete classification of pseudo H-type Lie algebras. I. Geom. Dedicata 190 (2017), 23–51.
K. Furutani and I. Markina: Complete classification of pseudo H-type Lie algebras. II. Geom. Dedicata 202 (2019), 233–264.
L. Yu. Galitski and D. A. Timashev: On classification of metabelian Lie algebras. J. Lie Theory 9(1) (1999), 125–156.
C. Gordon: Homogeneous Riemannian manifolds whose geodesics are orbits. In: Progress in Nonlinear Differential Equations 20, 155–174. Topics in geometry: in memory of Joseph D’Atri. Birkhauser, (1996).
C. Gordon: Naturally reductive homogeneous Riemannian manifolds. Canad. J. Math. 37(3) (1985), 467–487.
C. Gordon and Yu. G. Nikonorov: Geodesic orbit Riemannian structures on Rn. J. Geom. Phys. 134 (2018), 235–243.
M. Goze and Yu. Khakimdjanov: Nilpotent Lie algebras. Mathematics and its Applications 361. Dordrecht: Kluwer Academic Publishers (1996).
D. Husemoller: Fibre Bundles. 3rd ed. Graduate Texts in Mathematics. 20. Berlin: Springer-Verlag (1994).
M. Ignatyev, I. Kaygorodov and Yu. Popov: The geometric classification of 2-step nilpotent algebras and applications. Rev. Mat. Complut. 35(3) (2022), 907–922.
A. Kaplan: On the geometry of groups of Heisenberg type. Bull. London Math. Soc. 15 (1983), 35–42.
A. Kaplan: Riemannian nilmanifolds attached to Clifford modules. Geom. Dedic. 11 (1981), 127–136.
O. Kowalski and L. Vanhecke: Classification of five-dimensional naturally reductive spaces. Math. Proc. Cambridge Philos. Soc. 97(3) (1985), 445–463.
O. Kowalski and L. Vanhecke: Riemannian manifolds with homogeneous geodesics. Boll. Un. Mat. Ital. B 5(7(1)) (1991), 189–246.
J. Lauret: Commutative spaces which are not weakly symmetric. Bull. Lond. Math. Soc. 30(1) (1998), 29–36.
F. Levstein and A. Tiraboschi: Classes of 2-step nilpotent Lie algebras. Commun. Algebra 27(5) (1999), 2425–2440.
D. V. Millionshchikov and R. Jimenez: Geometry of central extensions of nilpotent Lie algebras. Tr. Mat. Inst. Steklova 305 (2019), 225–249 (in Russian); English translation: Proc. Steklov Inst. Math. 305 (2019), 209–231.
D. Montgomery and H. Samelson: Transformation groups of spheres. Ann. of Math. 44(2) (1943), 454–470.
H. D. Nguyen: Compact weakly symmetric spaces and spherical pairs. Proc. Amer. Math. Soc. 128(11) (2000), 3425–3433.
Y. Nikolayevsky and J. A. Wolf: The structure of geodesic orbit Lorentz nilmanifolds. J. Geom. Anal. 33(3) (2023), Paper No. 82, 12 pp.
Yu. G. Nikonorov: Geodesic orbit Riemannian metrics on spheres. Vladikavkaz. Mat. Zh. 15 (2013), 67–76.
Yu. G. Nikonorov: On geodesic orbit nilmanifolds. J. Geom. Phys. 203 (2024), Article ID 105257, 12 pp.
Yu. G. Nikonorov: On the structure of geodesic orbit Riemannian spaces. Ann. Glob. Anal. Geom. 52 (2017), 289–311.
A. V. Podobryaev: Homogeneous geodesics in sub-Riemannian geometry. ESAIM, Control Optim. Calc. Var. 29 (2023), Paper No. 11, 17 pp.
C. Riehm: Explicit spin representations and Lie algebras of Heisenberg type. J. Lond. Math. Soc. 29(2(1)) (1984), 49–62.
J. Scheuneman: Two-step nilpotent Lie algebras. J. Algebra 7 (1967), 152–159.
A. Selberg: Harmonic Analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc. 20 (1956), 47–87.
N. P. Souris: Geodesic orbit metrics in compact homogeneous manifolds with equivalent isotropy submodules. Transform. Groups. 23(4) (2018), 1149–1165.
N. P. Souris: On a class of geodesic orbit spaces with abelian isotropy subgroup. Manuscripta Math. 166 (2021), 101–129.
R. Storm: Structure theory of naturally reductive spaces. Differ. Geom. Appl. 64 (2019), 174–200.
R. Storm: The classification of 7- and 8-dimensional naturally reductive spaces. Can. J. Math. 72(5) (2020), 1246–1274.
H. Tamaru: Riemannian geodesic orbit metrics on fiber bundles. Algebras Groups Geom. 15(1) (1998) 55–67.
H. Tamaru: Riemannian g.o. spaces fibered over irreducible symmetric spaces. Osaka J. Math. 36(4) (1999), 835–851.
E. N. Wilson: Isometry groups on homogeneous nilmanifolds. Geom. Dedicata 12(3) (1982), 337–346.
J. A. Wolf: Harmonic Analysis on Commutative Spaces. American Mathematical Society (2007).
J. A. Wolf and Z. Chen: Weakly symmetric pseudo-Riemannian nilmanifolds. J. Differ. Geom. 121(3) (2022), 541–572.
M. Xu, S. Deng and Z. Yan: Geodesic orbit Finsler metrics on Euclidean spaces. Houston Journal of Mathematics 49(2) (2023), 283–303.
O. S. Yakimova: Weakly symmetric Riemannian manifolds with a reductive isometry group. (Russian) Mat. Sb. 195(4) (2004), 143–160; English translation in Sb. Math. 195(3–4) (2004), 599.
Z. Yan and S. Deng: Finsler spaces whose geodesics are orbits. Diff. Geom. Appl. 36 (2014), 1–23.
Z. Yan and S. Deng: The classification of two step nilpotent complex Lie algebras of dimension 8. Czech. Math. J. 63(3) (2013), 847–863.
Z. Yan and T. Zhou: Homogeneous geodesics in homogeneous sub-Finsler manifolds. Bull. Korean Math. Soc. 60(6) (2023), 1607–1620.
W. Ziller: Weakly symmetric spaces. In: Progress in Nonlinear Differential Equations 20, 355–368. Topics in geometry: in memory of Joseph D’Atri. Birkhauser, (1996).
DOI: https://doi.org/10.22190/FUMI240919062N
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)