NEW EXAMPLES OF GEODESIC ORBIT NILMANIFOLDS

Yurii G. Nikonorov

DOI Number
https://doi.org/10.22190/FUMI240919062N
First page
915
Last page
928

Abstract


In this paper we discuss properties of geodesic orbit Riemannian metrics on nilpotent Lie groups and some recent examples of such metrics. In particular, we explain the construction of continuous families of pairwise non-isomorphic connected and simply connected nilpotent Lie groups of dimension 4k + 6, k ≥ 1, every of which admits geodesic orbit metrics.

Keywords

Lie groups, geodesic orbit metrics, geodesic orbit Riemannian metrics.

Full Text:

PDF

References


I. Agricola, A. C. Ferreira and T. Friedrich: The classification of naturally reductive homogeneous spaces in dimensions n ≤ 6. Differential Geom. Appl. 39 (2015), 52–92.

I. Agricola, A. C. Ferreira and R. Storm: Quaternionic Heisenberg groups as naturally reductive homogeneous spaces. Int. J. Geom. Methods Mod. Phys. 12(8) (2015), Article ID 1560007, 10 pp.

D. V. Alekseevsky and A. Arvanitoyeorgos: Riemannian flag manifolds with homogeneous geodesics. Trans. Amer. Math. Soc. 359 (2007), 3769–3789.

D. V. Alekseevsky and Yu. G. Nikonorov: Compact Riemannian manifolds with homogeneous geodesics. SIGMA Symmetry Integrability Geom. Methods Appl. 5 (2009), Article ID 093, 16 pp.

D. N. Akhiezer and E. B. Vinberg: Weakly symmetric spaces and spherical varieties. Transform. Groups 4 (1999), 3–24.

A. Arvanitoyeorgos: Homogeneous manifolds whose geodesics are orbits. Recent results and some open problems. Irish Math. Soc. Bulletin 79 (2017), 5–29.

V. N. Berestovskii and Yu. G. Nikonorov: Clifford – Wolf homogeneous Riemannian manifolds. J. Differential Geom. 82(3) (2009), 467–500.

V. N. Berestovskii and Yu. G. Nikonorov: Generalized normal homogeneous Riemannian metrics on spheres and projective spaces. Ann. Global Anal. Geom. 45(3) (2014), 167–196.

V. N. Berestovskii and Yu. G. Nikonorov: On δ-homogeneous Riemannian manifolds. Differential Geom. Appl. 26(5) (2008), 514–535.

V. N. Berestovskii and Yu. G. Nikonorov: Riemannian manifolds and homogeneous geodesics. Springer Monographs in Mathematics. Springer, Cham. (2020).

J. Berndt, O. Kowalski and L. Vanhecke: Geodesics in weakly symmetric spaces. Ann. Global Anal. Geom. 15 (1997), 153–156.

J. Berndt, F. Ricci and L. Vanhecke: Weakly symmetric groups of Heisenberg type. Differ. Geom. Appl. 8(3) (1998), 275–284.

A. L. Besse: Einstein Manifolds. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo (1987).

Z. Chen, Y. Nikolayevsky and Yu. G. Nikonorov: Compact geodesic orbit spaces with a simple isotropy group. Annals of Global Analysis and Geometry 63(1) (2023), Paper No. 7, 34 pp.

Z. Chen and Yu. G. Nikonorov: Geodesic orbit Riemannian spaces with two isotropy summands. I. Geometriae Dedicata 203 (2019), 163–178.

Z. Chen, J. A. Wolf and S. Zhang: On the geodesic orbit property for Lorentz manifolds. J. Geom. Anal. 32(3) (2022), Paper No. 81, 14 pp.

J. E. D’Atri and W. Ziller: Naturally reductive metrics and Einstein metrics on compact Lie groups. Memoirs Amer. Math. Soc. 19 (1979), no. 215.

V. del Barco: Homogeneous geodesics in pseudo-Riemannian nilmanifolds. Adv. Geom. 16(2) (2016), 175–187.

Z. Dušek: Geodesic graphs in Randers g.o. spaces. Comment. Math. Univ. Carolin. 61 (2020), 195–211.

Z. Dušek: Homogeneous geodesics and g.o. manifolds. Note Mat. 38 (2018), 1–15.

Z. Dušek, O. Kowalski and S. Nikčević: New examples of Riemannian g.o. manifolds in dimension 7. Differential Geom. Appl. 21 (2004), 65–78.

P. Eberlein: Central conjugate locus of 2-step nilpotent Lie groups. Math. Z. 287(3–4) (2017), 1215–1233.

P. Eberlein: Geometry of 2-step nilpotent groups with a left invariant metric. Ann. Sci. l’Ecole Norm. Sup. ´ 27(4(5)) (1994), 611–660.

P. Eberlein: Geometry of 2-step nilpotent groups with a left invariant metric. II. Trans. Amer. Math. Soc. 343(2) (1994), 805–828.

K. Furutani and I. Markina: Automorphism groups of pseudo H-type algebras. J. Algebra 568 (2021), 91–138.

K. Furutani and I. Markina: Complete classification of pseudo H-type Lie algebras. I. Geom. Dedicata 190 (2017), 23–51.

K. Furutani and I. Markina: Complete classification of pseudo H-type Lie algebras. II. Geom. Dedicata 202 (2019), 233–264.

L. Yu. Galitski and D. A. Timashev: On classification of metabelian Lie algebras. J. Lie Theory 9(1) (1999), 125–156.

C. Gordon: Homogeneous Riemannian manifolds whose geodesics are orbits. In: Progress in Nonlinear Differential Equations 20, 155–174. Topics in geometry: in memory of Joseph D’Atri. Birkhauser, (1996).

C. Gordon: Naturally reductive homogeneous Riemannian manifolds. Canad. J. Math. 37(3) (1985), 467–487.

C. Gordon and Yu. G. Nikonorov: Geodesic orbit Riemannian structures on Rn. J. Geom. Phys. 134 (2018), 235–243.

M. Goze and Yu. Khakimdjanov: Nilpotent Lie algebras. Mathematics and its Applications 361. Dordrecht: Kluwer Academic Publishers (1996).

D. Husemoller: Fibre Bundles. 3rd ed. Graduate Texts in Mathematics. 20. Berlin: Springer-Verlag (1994).

M. Ignatyev, I. Kaygorodov and Yu. Popov: The geometric classification of 2-step nilpotent algebras and applications. Rev. Mat. Complut. 35(3) (2022), 907–922.

A. Kaplan: On the geometry of groups of Heisenberg type. Bull. London Math. Soc. 15 (1983), 35–42.

A. Kaplan: Riemannian nilmanifolds attached to Clifford modules. Geom. Dedic. 11 (1981), 127–136.

O. Kowalski and L. Vanhecke: Classification of five-dimensional naturally reductive spaces. Math. Proc. Cambridge Philos. Soc. 97(3) (1985), 445–463.

O. Kowalski and L. Vanhecke: Riemannian manifolds with homogeneous geodesics. Boll. Un. Mat. Ital. B 5(7(1)) (1991), 189–246.

J. Lauret: Commutative spaces which are not weakly symmetric. Bull. Lond. Math. Soc. 30(1) (1998), 29–36.

F. Levstein and A. Tiraboschi: Classes of 2-step nilpotent Lie algebras. Commun. Algebra 27(5) (1999), 2425–2440.

D. V. Millionshchikov and R. Jimenez: Geometry of central extensions of nilpotent Lie algebras. Tr. Mat. Inst. Steklova 305 (2019), 225–249 (in Russian); English translation: Proc. Steklov Inst. Math. 305 (2019), 209–231.

D. Montgomery and H. Samelson: Transformation groups of spheres. Ann. of Math. 44(2) (1943), 454–470.

H. D. Nguyen: Compact weakly symmetric spaces and spherical pairs. Proc. Amer. Math. Soc. 128(11) (2000), 3425–3433.

Y. Nikolayevsky and J. A. Wolf: The structure of geodesic orbit Lorentz nilmanifolds. J. Geom. Anal. 33(3) (2023), Paper No. 82, 12 pp.

Yu. G. Nikonorov: Geodesic orbit Riemannian metrics on spheres. Vladikavkaz. Mat. Zh. 15 (2013), 67–76.

Yu. G. Nikonorov: On geodesic orbit nilmanifolds. J. Geom. Phys. 203 (2024), Article ID 105257, 12 pp.

Yu. G. Nikonorov: On the structure of geodesic orbit Riemannian spaces. Ann. Glob. Anal. Geom. 52 (2017), 289–311.

A. V. Podobryaev: Homogeneous geodesics in sub-Riemannian geometry. ESAIM, Control Optim. Calc. Var. 29 (2023), Paper No. 11, 17 pp.

C. Riehm: Explicit spin representations and Lie algebras of Heisenberg type. J. Lond. Math. Soc. 29(2(1)) (1984), 49–62.

J. Scheuneman: Two-step nilpotent Lie algebras. J. Algebra 7 (1967), 152–159.

A. Selberg: Harmonic Analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc. 20 (1956), 47–87.

N. P. Souris: Geodesic orbit metrics in compact homogeneous manifolds with equivalent isotropy submodules. Transform. Groups. 23(4) (2018), 1149–1165.

N. P. Souris: On a class of geodesic orbit spaces with abelian isotropy subgroup. Manuscripta Math. 166 (2021), 101–129.

R. Storm: Structure theory of naturally reductive spaces. Differ. Geom. Appl. 64 (2019), 174–200.

R. Storm: The classification of 7- and 8-dimensional naturally reductive spaces. Can. J. Math. 72(5) (2020), 1246–1274.

H. Tamaru: Riemannian geodesic orbit metrics on fiber bundles. Algebras Groups Geom. 15(1) (1998) 55–67.

H. Tamaru: Riemannian g.o. spaces fibered over irreducible symmetric spaces. Osaka J. Math. 36(4) (1999), 835–851.

E. N. Wilson: Isometry groups on homogeneous nilmanifolds. Geom. Dedicata 12(3) (1982), 337–346.

J. A. Wolf: Harmonic Analysis on Commutative Spaces. American Mathematical Society (2007).

J. A. Wolf and Z. Chen: Weakly symmetric pseudo-Riemannian nilmanifolds. J. Differ. Geom. 121(3) (2022), 541–572.

M. Xu, S. Deng and Z. Yan: Geodesic orbit Finsler metrics on Euclidean spaces. Houston Journal of Mathematics 49(2) (2023), 283–303.

O. S. Yakimova: Weakly symmetric Riemannian manifolds with a reductive isometry group. (Russian) Mat. Sb. 195(4) (2004), 143–160; English translation in Sb. Math. 195(3–4) (2004), 599.

Z. Yan and S. Deng: Finsler spaces whose geodesics are orbits. Diff. Geom. Appl. 36 (2014), 1–23.

Z. Yan and S. Deng: The classification of two step nilpotent complex Lie algebras of dimension 8. Czech. Math. J. 63(3) (2013), 847–863.

Z. Yan and T. Zhou: Homogeneous geodesics in homogeneous sub-Finsler manifolds. Bull. Korean Math. Soc. 60(6) (2023), 1607–1620.

W. Ziller: Weakly symmetric spaces. In: Progress in Nonlinear Differential Equations 20, 355–368. Topics in geometry: in memory of Joseph D’Atri. Birkhauser, (1996).




DOI: https://doi.org/10.22190/FUMI240919062N

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)