( ; ; 2)-CHEREDNIK-OPDAM LIPSCHITZ FUNCTIONS IN THE SPACE L2 ;(R)

Radouan Daher, Salah El Ouadih

DOI Number
-
First page
815
Last page
823

Abstract


In this paper, using a generalized translation operator, we obtain an analog of Younis Theorem 5.2 in [3] for the Cherednik-Opdam transform for functions satisfying the ( ; ; 2)-Cherednik-Opdam Lipschitz condition in the space L2 ;(R).


Keywords

Cherednik-Opdam operator; Cherednik-Opdam transform; generalized translation.

Keywords


Cherednik-Opdam operator; Cherednik-Opdam transform; Generalized translation.

Full Text:

PDF

References


E. M. Opdam, Harmonic analysis for certain representations of graded Hecke algebras, Acta Math. Vol. 175, no. 1, (1995), 75-121.

J. P. Anker, F. Ayadi and M. Sifi, Opdams hypergeometric functions: product formula and convolution structure in dimension 1, Adv. Pure Appl. Math. Vol. 3, no. 1, (2012), 11-44.

M. S. Younis, Fourier transforms of Dini-Lipschitz functions. Int. J. Math. Math. Sci. Vol. 9, no. 2,(1986), 301-312. doi:10.1155/S0161171286000376.

S. S. Platonov, Approximation of functions in L2-metric on noncompact rank 1 symmetric space. Algebra Analiz . Vol. 11, no. 1, (1999), 244-270.

L. N. Mishra, V. N. Mishra, K. Khatri and Deepmala, On the trigonometric approximation of signals belonging to generalized weighted Lipschitz W(Lr, (t)), (r 1) class by matrix (C1.Np) Operator of conjugate series of its Fourier series, Applied Mathematics and Computation, Vol. 237, (2014), 252-263.

V. N. Mishra, K. Khatri, L. N. Mishra and Deepmala; Trigonomet-

ric approximation of periodic signals belonging to generalized weighted Lipschitz W′(Lr, (t)), (r 1)− class by N¨orlund-Euler (N, pn)(E, q) operator of conjugate series of its Fourier series, Journal of Classical Analysis, Vol. 5, no. 2 (2014), 91-105. doi:10.7153/jca-05-08.

V. N. Mishra and L. N. Mishra, Trigonometric approximation of signals (functions) in Lp(p 1)-norm, International Journal of Contemporary Mathematical Sciences, Vol. 7, no. 19, (2012), 909-918.

A. Abouelaz, R. Daher and M. El Hamma, Generalization of Titchmarshs theorem for the Jacobi transform, Ser. Math. Inform. Vol. 28, no. 1, (2013), 43-51.


Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)