Ricci Solitons and Gradient Ricci Solitons in an LP-Sasakian Manifold

abul kalam mondal

DOI Number
-
First page
145
Last page
153

Abstract


The object of the present paper is to study an LP-Sasakian manifold admitting Ricci solitons and gradient Ricci solitons.

Keywords


LP-Sasakian manifold, Ricci Soliton, Gradient Ricci Soliton,

Full Text:

PDF

References


Cao, H. D., Geometry of Ricci solitons, Chinese Ann. Math. Ser. B27(2006), 121-142.

Chave T., Valent G., Quasi-Einstein metrics and their renoirmalizability properties, Helv.Phys. Acta. 69(1996), 344-347.

Chave, T., Valent, G., On a class of compact and non-compact quasi-Einstein metrics and their enoirmalizability properties, Nuclear Phys. B, 478(1996), 758-778.

Chow, B., and Knopf, D., The Ricci flow: An introduction, Mathematical Surveys and Monographs 110, American Math. Soc., (2004).

Derdzinski, A., Compact Ricci solitons, preprint.

De, U. C., Ricci soliton and gradient Ricci soliton on P-Sasakian manifolds, The Aligarh Bull. of Maths., 29(2010), 29-34.

De, U. C., Al-Aqeel, A. and Ghosh, G. C., On Lorentzian para-Sasakian manifolds, Kuwait J. Sci. Eng.,31(2),2004,1-13.

De, U. C., Mihai, I. and Shaikh, A. A., On Lorentzian para-Sasakian manifolds, Korean J. Math. sciences,6(1999), 1-13.

De, U. C., Matsumoto, K. and Shaikh, A. A., On Lorentzian Para-Sasakian Manifolds, Rend. Sem. Mat. Messina Ser.II, 1999, 149-158.

De, U. C., Shaikh, A. A., On 3-dimensional LP-Sasakian manifolds, Soochow J. Math. 26(2000), 359-368.

Friedan, D., Non linear models in 2+ dimensions, Ann. Phys. 163(1985), 318-419.

Ghosh, A., Sharma, R., and Cho, J. T., Contact metric manifolds with -parallel torsion tensor, Ann. Glob. Anal. Geom., 34(2008), 287-299.

Hamilton, R. S., The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math. 71, American Math. Soc.,(1988).

Ivey, T., Ricci solitons on compact 3-manifolds, Differential Geo. Appl. 3(1993), 301-307.

Matsumoto, K., On Lorentzian Paracontact Manifolds, Bull. Yamagata Univ. Natur. Sci.

(1989), 151-152.

Mihai, I. and Rosca, R., On Lorentzian P-Sasakian Manifolds, Classical Analysis. World Scientific, Singapore, 1992, 155-169.

Matsumoto, K. and Mihai, I., On a certain transformation in a Lorentzian para-Sasakian

manifold, Tensor (N.S.) 47(1988), 189-197.

Perelman, G., The entopy formula for the Ricci flow and its geometric applications, Preprint,

http://arxiv.org/abs/math.DG/02111159.

Sharma, R., Certain results on K-contact and (k, μ)- contact manifolds, Journal of Geometry,

(2008), 138-147.

Tripathi, M. M. and De, U. C., Lorentzian Almost Paracontact Manifolds and their Submanifolds,

J. Korea Soc. Math. Educ. Ser. B: Pure and Appl. Math. 8(2001), 101-125.

Yano, K. and Kon, M., Structures on manifolds, Series in Pure Math., Vol-3, World Scientific,


Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)