COMMON LEAST-RANK SOLUTION OF MATRIX EQUATIONS A₁X₁B₁=C₁ AND A₂X₂B₂=C_{2 }WITH APPLICATIONS
Abstract
Keywords
Full Text:
PDFReferences
A. Ben Israel, T. Greville, Generalized Inverse ,Theory and Applications, Kreiger, 1980.
--------------------------------------------------------------------
ca : S. L. Cambell, C. D. Meyer, Generalized Inverse of Linear Transformations, Society for industrial and applied Mathematics, 2009.
--------------------------------------------------------------------
fu : X. Fu Liu, Hu Yang, An expression of the general common least squares solution to a pair of matrix equations with applications, Comp. math. appl, 61 (2011), 3071-3078.
-----------------------------------------------------------------------
li : A. Liao, Y. Lei, Least squares solution with the minimum norm for the matrix equation (AXB,GXH)=(C,D), Comp. Math. Appl, 50 (2005), 539-549.
-------------------------------------------------------------------------
li1 : Y. Liu, Ranks of solutions of the linear matrix equation AX+YB=C, Comp. Math. Appl, 52 (2006), 861-872.
-------------------------------------------------------------------------
li2 : Y. Liu, Ranks of least squares solutions of the matrix equation AXB=C, Comp. math. appl, 55 (2008), 1270-1278.
-------------------------------------------------------------------------
mi : S. K. Mitra, A pair of of simultaneous linear matrix equations and a matrix programming problem, Linear Algebra Appl, 131 (1990), 97-123.
-------------------------------------------------------------------------
mi1 : S. K. Mitra, Common solution to a pair of linear matrix equations A₁X₁B₁=C₁ and A₂X₂B₂=C₂, Proc. Cambridge philos, Soc 74 (1973), 213-216.
-------------------------------------------------------------------------
na : A. Navarra, P. L. Odell, D. M. Yong, A representation of the general common solution A₁X₁B₁=C₁ and A₂X₂B₂=C₂ with applications, Comp. Math. Appl, 41 (2001), 929-935.
-------------------------------------------------------------------------
ti : Y. Tian, Rank Equalities Related to Generalized Inverses of Matrices and Their Applications, Master thesis, Montreal, Quebec, Canada, 2000.
-------------------------------------------------------------------------
ti1 : Y. Tian, Relations between least squares and least rank solution of the matrix equations AXB=C. Appl. math. comput, 219 (2013), 10293-10301.
-------------------------------------------------------------------------
zh : F. Zhang, Y. Li, W. Guo, J. Zhao, Least squares solutions with special structure to the linear matrix equation AXB=C, Comp. math. appl, 217 (2011), 10049-10057.
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)