Existence and Stability Results for Impulsive Integro-DifferentialEquations
Abstract
Keywords
Full Text:
PDFReferences
bibitem{Samo} A. M. Samoilenko, N. A. Perestyuk, Impulsive differential equations, vol.14 of World Scientific Series on Nonlinear
Science. Series A: Monographs and Treatises, World Scientific,
Singapore, (1995).
bibitem{Bain} D. D. Bainov, V. Lakshmikantham, P. S. Simeonov, Theory of impulsive differential equations, vol. 6 of Series in
Modern Applied Mathematics, World Scientific, Singapore, (1989).
bibitem{Benchohra} M. Benchohra, J. Henderson, S. Ntouyas, Impulsive differential
equations and inclusions, vol. 2 of Contemporary Mathematics and Its
Applications, Hindawi, New York, NY, USA, 2006.
bibitem{Hernandez} E. Hern'{a}ndez, D. O'Regan, On a new class of abstract impulsive
differential equations, Proc. Amer. Math. Soc., 141(2013),
-1649.
bibitem{Pierri} M. Pierri, D. O'Regan, V. Rolnik, Existence of solutions for
semi-linear abstract differential equations with not instantaneous
impulses, Appl. Math. Comput., 219(2013), 6743-6749.
bibitem{Ulam} S. M. Ulam, A collection of mathematical problems, Interscience
Publishers, New York, 1968.
bibitem{Hyers41} D. H. Hyers, On the stability of the linear functional equation,
Proc. Nat. Acad. Sci., 27(1941), 222-224.
bibitem{Hyers} D. H. Hyers, G.
Isac, Th. M. Rassias, Stability of functional equations in several
variables, Birkh"{a}user, 1998.
bibitem{Rassias} Th. M. Rassias, On the stability of linear mappings in Banach
spaces, Proc. Amer. Math. Soc., 72(1978), 297-300.
bibitem{Jung2} S.-M. Jung, Hyers-Ulam-Rassias stability of functional equations in
mathematical analysis, Hadronic Press, Palm Harbor, 2001.
bibitem{Jung2-add} S.-M. Jung, Hyers-Ulam-Rassias stability of functional equations in
nonlinear analysis, Springer, New York, 2011.
bibitem{Cadariu1} L. Cu{a}dariu, Stabilitatea
Ulam-Hyers-Bourgin pentru ecuatii functionale, Ed. Univ. Vest
Timic{s}oara, Timic{s}ara, 2007.
bibitem{Ibrahim} R. W. Ibrahim, Generalized Ulam-Hyers stability for fractional
differential equations. Int. J. Math., 23(2012), 1250056.
bibitem{Jung} S.-M. Jung, T. S. Kim, K. S. Lee, A fixed point approach to the stability of quadratic functional equation, Bull. Korean Math. Soc.,
(2006), 531-541.
bibitem{Jung-add1} S.-M. Jung, Th. M. Rassias, Generalized Hyers-Ulam stability of
Riccati differential equation, Math. Inequal. Appl., 11(2008),
-782.
bibitem{Jung-add3} J. Brzdc{e}k, S.-M. Jung, A note on stability of an operator linear
equation of the second order, Abstr. Appl. Anal., 2011(2011),
Article ID 602713, 15 pages.
bibitem{Andras-NATMA} Sz. Andr'{a}s, J. J. Kolumb'{a}n, On the Ulam-Hyers stability of
first order differential systems with nonlocal initial conditions,
Nonlinear Anal.:TMA, 82(2013), 1-11.
bibitem{Andras-AMC} Sz. Andr'{a}s, A. R. M'{e}sz'{a}ros, Ulam-Hyers stability of
dynamic equations on time scales via Picard operators, Appl. Math.
Comput., 219(2013), 4853-4864.
bibitem{Burger} M. Burger, N. Ozawa, A. Thom, On Ulam stability, Isr. J. Math.,
(2013), 109-129.
bibitem{Cimpean} D. S. Cimpean, D. Popa, Hyers-Ulam stability of Euler's equation,
Appl. Math. Lett., 24(2011), 1539-1543.
bibitem{Hegyi} B. Hegyi, S.-M. Jung, On the stability of Laplace's equation, Appl.
Math. Lett., 26(2013), 549-552.
bibitem{Rezaei} H. Rezaei, S. M. Jung, Th. M. Rassias, Laplace transform and
Hyers-Ulam stability of linear differential equations, J. Math.
Anal. Appl., 403(2013), 244-251.
bibitem{Lungu} N. Lungu, D. Popa, Hyers-Ulam stability of a first order partial differential equation,
J. Math. Anal. Appl., 385(2012), 86-91.
bibitem{Popa} D. Popa, I. Rac{s}a, On the Hyers-Ulam stability of the linear differential equation,
J. Math. Anal. Appl., 381(2011), 530-537.
bibitem{Rus2009} I. A. Rus, Ulam stability of ordinary
differential equations, Studia Univ. ``Babec{s} Bolyai"
Mathematica, 54(2009), 125-133.
bibitem{Rus2010} I. A. Rus, Ulam stabilities of ordinary differential equations in a
Banach space, Carpathian J. Math., 26(2010), 103-107.
bibitem{XuTZ} T. Z. Xu, On the stability of multi-Jensen mappings in
$beta$-normed spaces, Appl. Math. Lett., 25(2012), 1866-1870.
bibitem{Wang-JMAA} J. Wang, M. Fev{c}kan, Y. Zhou, Ulam's type stability of impulsive ordinary differential
equations, J. Math. Anal. Appl., 395(2012), 258-264.
bibitem{Diaz} J. B. Diaz, B. Margolis, A fixed point theorem of the alternative,
for contractions on a generalized complete metric space, Bull. Amer.
Math. Soc., 74(1968), 305-309.
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)