ENERGY DECAY RATES FOR THE BRESSE-CATTANEO SYSTEM WITH WEAK NONLINEAR BOUNDARY DISSIPATION

Taklit Hamadouche, Ammar Khemmoudj

DOI Number
10.22190/FUMI1705659H
First page
659
Last page
685

Abstract


In this paper, we consider a one-dimensional Bresse system with Cattaneo’s type heat conduction and a nonlinear weakly dissipative boundary feedback localized on a part of the boundary. We show the well-posedness, using the semigroup theory, and establish an explicit and general decay rate result without imposing a specific growth assumption on the behavior of damping terms near zero.


Keywords


Bresse system; General decay;Cattaneo's law ;Boundary damping;Weak dissipation

Full Text:

PDF

References


F. Alabau-Bousouira, J. E. Munoz Rivera, D. S. Almeida Junior, Stability to weak dissipative Bresse system, Journal of Math. Anal. and Apli., 2011, 374, 481-498.

A.L. Ayadi, A.Bchatina, M. Hamouda, and S.Messouadi. General Decay in some Timoshenko-type systems with thermoelasticity second sound. Advances in Nonlinear Analysis. 2015; 4(4):263-284.

J.A.C. Bresse . Cours de Mécanique Applique. Mallet Bachelier: Paris, 1859.

H. Brezis. Functional analysis, Sobolev spaces and partial differential equations. Springer: Dordrecht, Heidelberg, New York, London, 2010.

W.Charles, J.A. Soriano, F.A.F. Nascimento, J.H. Rodrigues. Decay rates for Bresse system with arbitrary nonlinear localized damping. J Differential Equations. 2013;255:2267-2290.

L.H. Fatori, R.N. Monteiro. The optimal decay rate for a weak dissipative Bresse system. Applied Mathematics Letters. 2012;25:600-604.

L.H. Fatori, J.E. Munoz Rivera. Rates of decay to weak thermoelastic Bresse system. IMA Journal of Applied Mathematics 2010; 75:881904.

H. D.Fernandez Sare, and R.Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier law, Arch. Rational Mech. Anal., 194 (1) (2009), 221-251.

D.D.Joseph , L. Preziosi . Heat waves. Reviews of Modern Physics 1989; 61(1):4173.

V. Komornik. Exact controllability and stabilization. The Multiplier Method. RAM: Research in Applied Mathematics, Masson, Paris; 1994.

Li.Donghao, C. Zhang, Q. Hu and H. Zhang. Energy Decay Rate for Bresse System with Nonlinear Localized Damping. British Journal of Mathematics & Computer Science. 2014; 4(12): 1665-1677.

Z.Y. Liu , B.P. Rao. Energy decay rate of the thermoelastic Bresse system. Zeitschrift fur AngewandteMathematik und Physik 2009; 60:5469.

P. Martinez. A new method to obtain decay rate estimates for dissipative systems with localized damping. Revista Matem´atica Complutense 1999; 12(1):251-283.

S. A.Messaoudi, and M. I. Mustafa, On the stabilization of the Timoshenko system by a weak nonlinear dissipation, Math. Methods Appl. Sci.(2009) 32, 454.

M. I.Mustafa , Uniform decay for wave equations with weakly dissipative boundary feedback, Dynamical Systems (2015), DOI:10.1080/14689367.2014.1002455

N. Najdi and A.Wehbe.Weakly locally thermal stabilization of bresse system.Electron. J. Diff. Equ.,2014(182):1-19.

N.Noun, A.Wehbe. Weakly locally internal stabilization of elastic Bresse system. C R Acad Sci Paris. Ser. I. 2012;350:493-498.

A.Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag: New York, 1983.

B. Said-Houari, T. Hamadouche. The asymptotic behavior of the Bresse-Cattaneo system, Commun. Contemp. Math.1550045 (2015) 18 pages.

M.L. Santos, D.S.A. Junior. Numerical exponential decay to dissipative Bresse System. J Appl Math. 2010;848620:1-17.

M.L. Santos, D.S. Almeida J unior, J.E. Munoz Rivera, The stability number of the Timoshenko system with second sound, J. Di . Eqns. 253 (2012), 2715-2733 .

J.A. Soriano, W.Charles, R.Schulz. Asymptotic stability for Bresse systems. Journal of Mathematical Analysis and Applications. 2014;412:369-380.

J.A.Soriano , J.E.M.Rivera , L.H. Fatori, Bresse system with indefinite damping. J Math Anal Appl. 2012;387: 284-290.

S.P. Timoshenko. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philosophical Magazine Series 1921; 6(41):744-746.

A.Wehbe, W.Youssef. Exponential and polynomial stability of an elastic Bresse system with two locally distributed feedbacks.Journal of Mathematical Physics.2010;51(103523)1-17.

Y. Wu, X. Xue. Boundary Feedback Stabilization of Kirchhoff-Type Timoshenko System. J Dyn Control Syst. DOI 10.1007/s10883-014-9229-4.




DOI: https://doi.org/10.22190/FUMI1705659H

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)