EXISTENCE OF SOLUTIONS FOR NONLINEAR IMPULSIVE DYNAMIC EQUATIONS ON A TIME SCALE

Abdelouaheb Ardjouni, Ahcene Djoudi

DOI Number
https://doi.org/10.22190/FUMI1801079A
First page
079
Last page
091

Abstract


Let T be a time scale such that 0,t_{i},T∈T, i=1,2,…,n, and 0<t_{i}<t_{i+1}. Assume each t_{i} is dense. Using a fixed point theorem due to Krasnoselskii-Burton, we show that the nonlinear impulsive dynamic equation

    {<K1.1/>┊

<K1.1 ilk="MATRIX" >
y^{Δ}(t)=-a(t)h(y^{σ}(t))+f(t,y(t)), t∈(0,T],
y(0)=0,
y(t_{i}⁺)=y(t_{i}⁻)+I(t_{i},y(t_{i})), i=1,2,…,n,
</K1.1>
where y(t_{i}^{±})=lim_{t→t_{i}^{±}}y(t), and y^{Δ} is the Δ-derivative on T, has a solution.

Keywords

Fixed point, large contraction, time scales, nonlinear impulsive dynamic equations.

Full Text:

PDF

References


M. Adivar and Y. N. Raffoul: Existence of periodic solutions in totally nonlinear delay dynamic equations. Electronic Journal of Qualitative Theory of Differential Equations 2009 (2009), No. 1, 1–20.

A. Ardjouni and A. Djoudi: Existence of periodic solutions for nonlinear neutral dynamic equations with functional delay on a time scale. Acta Univ. Palacki. Olomnc., Fac. rer. nat., Mathematica 52, 1 (2013) 5–19.

A. Ardjouni and A. Djoudi: Existence of periodic solutions for nonlinear neutral dynamic equations with variable delay on a time scale. Commun Nonlinear Sci Numer Simulat 17 (2012) 3061–3069.

A. Ardjouni and A. Djoudi: Periodic solutions in totally nonlinear dynamic equations with functional delay on a time scale. Rend. Sem. Mat. Univ. Politec. Torino Vol. 68, 4(2010), 349–359.

D. D. Bainov and P. S. Simeonov: Systems with Impulse Effect: Stability, Theory and Applications. Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood, 1989.

M. Bohner and A. Peterson: Dynamic Equations on Time Scales, An Introduction with Applications. Birkhäuser, Boston, 2001.

M. Bohner and A. Peterson: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston, 2003.

T. A. Burton: Liapunov functionals, fixed points and stability by Krasnoselskii’s theorem. Nonlinear Stud. 9 (2002), No. 2, 181–190.

T. A. Burton: Stability by Fixed Point Theory for Functional Differential Equations. Dover, New York, 2006.

H. Deham and A. Djoudi: Periodic solutions for nonlinear differential equation with functional delay. Georgian Mathematical Journal 15 (2008), No. 4, 635–642.

H. Deham and A. Djoudi: Existence of periodic solutions for neutral nonlinear differential equations with variable delay. Electronic Journal of Differential Equations, Vol. 2010 (2010), No. 127, pp. 1–8.

S. Hilger: Ein Masskettenkalkül mit Anwendung auf Zentrumsmanningfaltigkeiten. PhD thesis, Universität Würzburg, 1988.

E. R. Kaufmann, N. Kosmatov and Y. N. Raffoul: Impulsive dynamic equations on a time scale. Electronic Journal of Differential Equations 2008 (2008), No. 67, 1–9.

E. R. Kaufmann and Y. N. Raffoul: Periodic solutions for a neutral nonlinear dynamical equation on a time scale. J. Math. Anal. Appl., 319 (2006), No. 1, 315–325.

E. R. Kaufmann and Y. N. Raffoul: Periodicity and stability in neutral nonlinear dynamic equation with functional delay on a time scale. Electronic Journal of Differential Equations 2007 (2007), No. 27, 1–12.

V. Lakshmikantham, D. D. Bainov, and P. S. Simeonov: Theory of Impulsive Differential Equations. Series in Modern Applied Mathematics, 6, World Scientific, New Jersey, 1994.

A. M. Samo˘ılenko and N. A. Perestyuk: Impulsive Differential Equations. World Scientific Seriess on Nonlinear Science, Series A: Monographs and Treatises, 14, World Scientific, New Jersey, 1995.

D. R. Smart: Fixed point theorems. Cambridge Tracts in Mathematics, No. 66. Cambridge University Press, London-New York, 1974.

E. Yankson: Existence of periodic solutions for totally nonlinear neutral differential equations with functional delay. Opuscula Mathematica, VoL. 32, No. 3, 2012, 617–627.




DOI: https://doi.org/10.22190/FUMI1801079A

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)