Multigenerator Gabor Frames on Local Fields

Owais Ahmad, Neyaz Ahmad Sheikh

DOI Number
https://doi.org/10.22190/FUMI1802307A
First page
307
Last page
324

Abstract


The main objective of this paper is to provide complete characterization of multigenerator Gabor frames on a periodic set $\Omega$ in $K$. In particular, we provide some necessary and sufficient conditions for the multigenerator Gabor system to be a frame for $L^2(\Omega)$. Furthermore, we establish the complete characterizations of multigenerator Parseval Gabor frames.

Keywords

Multigenerator Gabor frames, periodic set, signal processing.

Keywords


Gabor Frame; Local Field;Fourier transform

Full Text:

PDF

References


O. Christensen, An Introduction to Frames and Riesz Bases,

Birkhauser, Boston, 2015.

D. Gabor, Theory of communications, J. Inst. Elect. Engn., 93, 429-457, 1946.

R. J. Duffin, A. C. Shaeffer, A class of nonharmonic Fourier series,

Trans. Amer. Math. Soc. 72 (1952) 341-366.

I. Daubechies, A. Grossmann, Y. Meyer, Painless non-orthogonal expansions, J. Math. Phys. 27(5) (1986) 1271-1283.

K. Grochenig, Foundation of Time-Frequency Analysis,

Birkhauser, Boston, 2001.

K. Grochenig, A.J. Janssen, N. Kaiblinger and GE. Pfander, Note on $B$-splines, wavelet scaling functions, and Gabor frames, IEEE Trans. Informat. Theory, 49(12), 3318-3320, 2003.

D. Li and H.K. Jiang Basic results of Gabor frame on local fields,

Chinese Ann. Math. Series B, 28(2), 165-176, 2007.

A. Ron and Z. Shen,

Weyl-Heisenberg frames and Riesz bases in L^2(mathbb R^d ),

Duke Math. J, 89, 237- 282, 1997.

F.A. Shah,A characterization of tight Gabor frame on local fields of positive characteristion,

Preprint, 2017.

F.A. Shah, Gabor frames on a half-line,

J. Contemp. Math. Anal., 47(5), 251-260, 2012.

M.H. Taibleson, Fourier Analysis on Local Fields,

Princeton University Press, Princeton, NJ, 1975.

M. Zibulski and Y. Y. Zeevi, Discrete multiwindow Gabor-type transforms, IEEE Trans. on Signal Proc., 45 (6), 1428-1442, 1997.

M. Zibulski and Y. Y. Zeevi, Analysis of multiwindow Gabor-type schemes by frame methods, Appl. and Comput. Harmon. Anal., 4 (2), 188-221, 1997.

A. Akan and L. F. Chaparro, Multi-window Gabor expansion for evolutionary spectral analysis, IEEE Trans. on Sig. Proc., 63 (3), 249-262, 1997.

S. Li, Discrete multi-Gabor expansions, IEEE Trans. on Informat. Theory, 45 (6) 1954-1967, 1999.

S. Li, Proportional nonuniform multi-Gabor expansions,

EURASIP J. on Appl, Sig. Proc., 17, 2723-2731, 2004.

N. K. Subbanna and Y. Y. Zeevi,Existence conditions for discrete noncanonical multiwindow Gabor schemes, IEEE Trans. on Signal Proc., 55 (1)0, 5113-5117, 2007.

Y. Z. Li and Q. F. Lian, Multi-window Gabor frames and oblique Gabor duals on discrete periodic sets,

Sc. China, 54 (5), 987-1010, 2011.

J. P. Gabardo and Y. Z. Li, Density results for Gabor systems associated with periodic subsets of the real line,Jour. of Approx. Th., 157 (2), 172-192, 2009.

Q. F. Lian and Y. Z. Li, Gabor frame sets for subspaces,

Adv. in Comput. Math., 34 (4), 391-411, 2011.

A. Ron and Z. W. Shen, Frames and stable bases for shift-invariant subspaces of L^2(R^d), Canad. Jour. of Math., 47 (5), 1051-1094, 1995.




DOI: https://doi.org/10.22190/FUMI1802307A

Refbacks





© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)