ON SOME NEW Pδ-TRANSFORMS OF KUMMER'S CONFLUENT HYPERGEOMETRIC FUNCTIONS

Rakesh K. Parmar, Vivek Rohira, Arjun K. Rathie

DOI Number
https://doi.org/10.22190/FUMI1902373P
First page
373
Last page
380

Abstract


The aim of our paper is to present Pδ -transforms of the Kummer’s confluent hypergeometric functions by employing the generalized Gauss’s second summation the-orem, Bailey’s summation theorem and Kummer’s summation theorem obtained earlier by Lavoie, Grondin and Rathie [9]. Relevant connections of certain special cases of the main results presented here are also pointed out.


Keywords

Hypergeometric functions; Gauss’s second summation theorem; gamma functions; Summation theorems.

Keywords


Kummer's function of the first kind; Confluent hypergeometric function; Laplace transform; $\mathcal{P}_{\delta}$-transform; Gauss's second summation theorem; Bailey's summation theorem; Kummer's summation theorem.

Full Text:

PDF

References


bibitem{Kim-Rat-Cvi} Y. S. Kim, A. K. Rathie and D. Cvijovic, New Laplace Transforms of Kummer's confluent hypergeometric functions, emph{Mathematical and Computer Modelling }, textbf{55} (2012), 1068--1071.

bibitem{Dilip} D. Kumar, Solution of fractional kinetic equation by a class of integral transform of pathway type, emph{Journal of Mathematical Physics} textbf{54} (2013), 1--13.

Article ID 043509.

bibitem{Lav-Gro-Rat-1} J. L. Lavoie, F. Grondin and A. K. Rathie, Generalizations of Watson's theorem on the sum of a $ _{3}{F}_{2}$, emph{Indian J. Math.} textbf{34} (1992), 23--32.

bibitem{Lav-Gro-Rat-Ar} J. L. Lavoie, F. Grondin, A. K. Rathie and K. Arora, Generalizations of Dixon's theorem on the sum of a $ _{3}{F}_{2}$, emph{Math. Comp.} textbf{62} (1994), 267--276.

bibitem{Lav-Gro-Rat-2} J. L. Lavoie, F. Grondin and A. K. Rathie, Generalization of Whipple's theorem on the sum of a $ _{3}{F}_{2}$, emph{J. Comput. Appl. Math.} textbf{72} (1996), 293--300.

bibitem{Rain}

E. D. Rainville, emph{Special Functions},

Macmillan Company, New York, 1960; Reprinted by Chelsea Publishing Company,

Bronx, New York, 1971.

bibitem{Slat-66}

L. J. Slater, emph{Generalized Hypergeometric Functions},

Cambridge University Press, Cambridge, London, and New York, 1966.

bibitem{Slat-60}

L.J. Slater, emph{Confluent Hypergeometric Functions}, Cambridge University Press, Cambridge, London, and New York, 1960.

bibitem{Sneddon} I. N. Sneddon, emph{The use of the Integral Transforms}, Tata McGraw-Hill, New Delhi, 1979.




DOI: https://doi.org/10.22190/FUMI1902373P

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)