Kenmotsu manifolds admitting Schouten-Van Kampen Connection
Abstract
Keywords
Keywords
Full Text:
PDFReferences
Bagewadi, C. S. and Ingalahalli, G.,{ Ricci solitons in Lorentzian $alpha$-Sasakian manifolds}. Acta Math. Academiae Paedagogicae Nyházi. (N.S.) 28 (1), (2012):59-68.
Bejancu, A. and Farran, H. R., {Foliations and geometric structures.} Vol. 580. Springer Science and Business Media, (2006).
Blair, David E., {Contact manifolds in Riemannian geometry. Lecture Notes in Mathematics.} Vol. 509. Springer-Verlag, Berlin-New York, (1976): 146.
De, U. C. and Matsuyama, Y., {Ricci solitons and gradient Ricci solitons in a Kenmotsu manifolds.} Southeast Asian Bulletin of Mathematics 37, no. 5 (2013).
De, U. C. and Shaikh, A. A., {Differential Geometry of manifolds.} Narosa Publishing House, New Delhi, (2007).
De, U. C., Yildiz, A. and Yaliniz, F., {On $phi$-recurrent Kenmotsu manifolds}. Turkish Journal of Mathematics 33, no. 1 (2009): 17-25.
Ghosh, G., {On Schouten-van Kampen connection in Sasakian manifolds.} Boletim da Sociedade Paranaense de Matemática 36, no. 4 (2018): 171-182.
Hamilton, R. S., {The Ricci flow on surfaces.} Contemp. math 71, no. 1 (1988): 237-261.
Ianus, S., {Some almost product structures on manifolds with linear connection.} In Kodai Mathematical Seminar Reports, vol. 23, no. 3, (1971): 305-310.
Kenmotsu, K.,{A class of almost contact Riemannian manifolds.} Tohoku Mathematical Journal, Second Series 24, no. 1 (1972): 93-103.
Nagaraja, H. G., Kiran Kumar D.L. and Prasad V. S., {Ricci solitons
on Kenmotsu manifolds under D-homothetic deformation}, Khayyam J. Math., 4
(2018): 102–109.
Nagaraja, H. G. and Premalatha, C. R., {Ricci solitons in f-Kenmotsu manifolds and 3-dimensional trans-Sasakian manifolds.} Progress in Applied Mathematics 3, no. 2 (2012): 1-6.
Nagaraja, H. G. and Venu. K. {Ricci Solution in Kenmotsu Manifolds.} Journal of Informatics and Mathematical Sciences 8.1 (2016): 29-36.
Olszak, Z., {The Schouten-van Kampen affine connection adapted to an almost (para) contact metric structure. } Publications de l'Institut Mathematique 94, no. 108 (2013): 31-42.
Pathak, G. and De, U. C.,{ On a semi-symmetric connection in a Kenmotsu manifold.} Bull. Calcutta Math. Soc, 94(4), (2002): 319-324.
Prakasha, D. G., Vanli, A. T., Bagewadi, C. S., and Patil, D. A., {Some classes of Kenmotsu manifolds with respect to semi-symmetric metric connection.} Acta Mathematica Sinica, English Series 29, no. 7 (2013): 1311-1322.
Schouten, J. A. and Van Kampen, E. R., {Zur Einbettungs-und Krümmungstheorie nichtholonomer Gebilde.} Mathematische Annalen 103, no. 1 (1930): 752-783.
Sharma, R., { Certain results on $K$-contact and $(k, mu)$-contact manifolds.}Journal of Geometry 89, no. 1 (2008): 138-147.
Sinha, B. B. and Sharma, R., {On para-A-Einstein manifolds.} Publications De L'Institut Mathematique. Nouvelle Serie, Tome 34.48 (1983): 211-215.
Sular, S., Ozgur, C. and De, U. C., {Quarter-symmetric metric connection in a Kenmotsu manifold. }SUT Journal of mathematics 44, no. 2 (2008): 297-306.
Tolga D., Cumali E. and Ali G., {Ricci Solitons in f-Kenmotsu Manifolds with the semi-symmetric non-metric connection.} NTMSC 4, No. 4, (2016): 276-284.
Yano, K., {Concircular geometry I. Concircular transformations.} Proceedings of the Imperial Academy 16.6 (1940): 195-200.
Yano, K. and Kon, M. {Structures on manifolds.}Series in Pure Mathematics, vol. 3. (1984).
A. Yildiz: {f-Kenmotsu manifolds with the Schouten-van Kampen connection.} Publi. Inst. Math. (N. S), 102 (2017), 93–105.
DOI: https://doi.org/10.22190/FUMI1901023H
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)