Totally real submanifolds of (LCS)n-manifolds
Abstract
The present paper deals with the study of totally real submanifolds and C-totally real submanifolds of (LCS)n-manifolds with
respect to Levi-Civita connection as well as quarter symmetric metric connection. It is proved that scalar curvature of C-totally real submanifolds of (LCS)n-manifold with respect to both the said connections are same.
Keywords
Keywords
Full Text:
PDFReferences
M. Ateceken and S. K. Hui: Slant and pseudo-slant submanifolds of LCS-manifolds. Czechoslovak Math. J. 63 (2013), 177–190.
A. Bejancu and N. Papaguic: Semi-invariant submanifolds of a Sasakian manifold. An Sti. Univ. “Al. I. Cuza” Iasi. 27 (1981), 163–170.
B. -Y Chen: Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions. Glasgow Math. J. 41 (1999), 33–41.
A. Friedmann and J. A. Schouten: ¨Uber die geometric derhalbsymmetrischen ¨Ubertragung. Math. Zeitscr. 21 (1924), 211–223.
S. Golab: On semi-symmetric and quarter symmetric linear connections. Tensor, N. S. 29 (1975), 249-254.
H. A. Hayden: Subspace of a space with torsion. Proc. London Math. Soc. 34 (1932), 27–50.
S. K. Hui and M. Atceken: Contact warped product semi-slant submanifolds of (LCS)n-manifolds. Acta Univ. Sapientiae Math. 3 (2011), 212–224.
S. K. Hui, M. Atceken and S. Nandy: Contact CR-warped product submanifolds of (LCS)n-manifolds. Acta Math. Univ. Comeniance. 86 (2017), 101–109.
S. K. Hui, M. Atceken and T. Pal: Warped product pseudo slant submanifolds of (LCS)n-manifolds. New Trends in Math. Sci. 5 (2017), 204–212.
S. K. Hui, L. I. Piscoran and T. Pal: Invariant submanifolds of (LCS)n-manifolds with respect to quarter symmetric metric connection to appear in Acta Math. Univ. Comeniance.
K. Matsumoto: On Lorentzian almost paracontact manifolds. Bull. of Yamagata Univ. Nat. Sci. 12 (1989), 151–156.
B. O’Neill: Semi Riemannian geometry with applications to relativity. Academic Press, New York, 1983.
A. A. Shaikh: On Lorentzian almost paracontact manifolds with a structure of the concircular type. Kyungpook Math. J. 43 (2003), 305–314.
A. A. Shaikh: Some results on (LCS)n-manifolds. J. Korean Math. Soc. 46 (2009), 449–461.
A. A. Shaikh and K. K. Baishya: On concircular structure spacetimes. J. Math. Stat. 1 (2005), 129–132.
A. A. Shaikh and K. K. Baishya: On concircular structure spacetimes II. American J. Appl. Sci. 3(4) (2006), 1790–1794.
K. Yano and M. Kon: Structures on manifolds, World Scientific publishing, 1984.
DOI: https://doi.org/10.22190/FUMI1802141H
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)