Remarks on metallic warped product manifolds

Adara-Monica Blaga, Cristina-Elena Hretcanu

DOI Number
https://doi.org/10.22190/FUMI1802269B
First page
269
Last page
277

Abstract


We characterize the metallic structure on the product of two metallic manifolds in terms of metallic maps and provide a necessary and sufficient condition for the warped product of two locally metallic Riemannian manifolds to be locally metallic. The particular case of product manifolds is discussed and an example of metallic warped product Riemannian manifold is provided.

Keywords

Riemannian manifold, metallic warped product, projection mapping.

Full Text:

PDF

References


bibitem{Atceken1}

{sc M. Atceken}:

textit{Warped Product Semi-Invariant Submanifolds in locally decomposable Riemannian manifolds}.

Hacet. J. Math. Stat. textbf{40}, no. 3, (2011), 401--407.

bibitem{Atceken2}

{sc M. Atceken and S. Keles}:

textit{On the product Riemannian manifolds}.

Differ. Geom. Dyn. Syst. textbf{5}, no.1, (2003), 1--8.

bibitem{Baik}

{sc Y. B. Baik}:

textit{A certain polynomial structure}.

J. Korean Math. Soc. textbf{16(80)}, no. 2, (1979), 167--175.

bibitem{bi}

{sc R. L. Bishop and B. O'Neill}:

textit{Manifolds of negative curvature}.

Trans. Amer. Math. Soc. textbf{145} (1969), 1--49.

bibitem{blhr}

{sc A. M. Blaga and C. E. Hretcanu}:

textit{Golden warped product Riemannian manifolds}.

accepted in Libertas Mathematica.

bibitem{CrHr}

{sc M. Crasmareanu and C. E. Hretcanu}:

textit{Golden differential geometry}.

Chaos Solitons Fractals textbf{38(5)} (2008), 1229--1238.

bibitem{CrHrMu}

{sc M. Crasmareanu, C. E. Hretcanu and M. I. Munteanu}:

textit{Golden- and product-shaped hypersurfaces in real space forms}.

Int. J. Geom. Methods Mod. Phys. textbf{10(4)} (2013), paper 1320006, 9 pp.

bibitem{Goldberg1}

{sc S. I. Goldberg and K. Yano}:

textit{Polynomial structures on manifolds}.

Kodai Math. Sem. Rep. textbf{22} (1970), 199--218.

bibitem{Goldberg2}

{sc S. I. Goldberg and N. C. Petridis}:

textit{Differentiable solutions of algebraic equations on manifolds}.

Kodai Math. Sem. Rep. textbf{25} (1973), 111--128.

bibitem{ha}

{sc A. N. Hatzinikitas}:

textit{A note on doubly warped product spaces},

arXiv:1403.0204v1.2014, Physics.

bibitem{Hr2}

{sc C. E. Hretcanu and M. C. Crasmareanu}:

textit{On some invariant submanifolds in Riemannian manifold with Golden Structure}.

An. c Stiinc t. Univ. Al. I. Cuza Iac si. Mat. (N.S.) textbf{53} (2007), Suppl., 199--211.

bibitem{Hr3}

{sc C. E. Hretcanu and M. C. Crasmareanu}:

textit{Applications of the Golden Ratio on Riemannian Manifolds}.

Turkish J. Math. textbf{33(2)} (2009), 179--191.

bibitem{Hr4}

{sc C. E. Hretcanu and M. C. Crasmareanu}:

textit{Metallic structures on Riemannian manifolds}.

Rev. Un. Mat. Argentina textbf{54(2)} (2013), 15--27.

bibitem{lu}

{sc W. J. Lu}:

textit{$f$-Harmonic maps of doubly warped product manifolds}.

Appl. Math. J. Chinese Univ. textbf{28} (2013), 240--252.




DOI: https://doi.org/10.22190/FUMI1802269B

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)