On Almost Paracontact Almost Paracomplex Riemannian Manifolds

Mancho Manev, Veselina Tavkova

DOI Number
-
First page
637
Last page
657

Abstract


Almost paracontact manifolds of odd dimension having an almost paracomplex structure on the paracontact distribution are studied. The components of the
fundamental (0,3)-tensor, derived by the covariant derivative of the structure endomorphism and the metric on the considered manifolds in each of the basic classes, are obtained. Then, the case of the lowest dimension 3 of these manifolds is considered. An associated tensor of the Nijenhuis tensor is introduced and the studied manifolds are characterized with respect to this pair of tensors. Moreover, a cases of paracontact and para-Sasakian types are commented. A family of examples is given.


Keywords

Paracontact manifold; Riemannian manifold; tensor; metric

Keywords


Almost paracontact manifold, Riemannian metric, almost paracomplex structure, Nijenhuis tensor

Full Text:

PDF

References


bibitem{AdatMiya77}

textsc{T. Adati {rm and} T. Miyazawa}: textit{On paracontact Riemannian manifolds}. TRU Mathematics {bf 13} (1977), 27--39.

bibitem{CrFoGa96}

textsc{V. Cruceanu, P. Fortuny {rm and} P. M. Gadea}: textit{A survey on paracomplex geometry}. Rocky Mountain Journal of Mathematics {bf 26} (1996), 83--115.

bibitem{HM}

textsc{H. Manev}: textit{ On the structure tensors of almost contact B--metric manifolds}. Filo-mat {bf 29} (2015), 427--436.

bibitem{HManMek}

textsc{H. Manev {rm and} D. Mekerov}: textit{Lie groups as 3-dimensional almost contact B-metric manifolds}. Journal of Geometry {bf 106} (2015), 229--242.

bibitem{MI1}

textsc{M. Manev {rm and} M. Ivanova}: textit{A classification of the torsion tensors on almost contact manifolds with

B-metric}. Central European Journal of Mathematics {bf 12} (2014), 1416--1432.

bibitem{ManSta01}

textsc{M. Manev {rm and} M. Staikova}: textit{On almost paracontact Riemannian manifolds

of type $(n,n)$}. Journal of Geometry {bf 72} (2001), 108--114.

bibitem{NakZam}

textsc{G. Nakova {rm and} S. Zamkovoy}: textit{Eleven classes of almost paracontact

manifolds with semi-Riemannian metric of $(n+1,n)$}. In: Recent Progress in Differential

Geo-met-ry and its Related Fields (T. Adachi, H. Hashimoto, M. Hristov, eds.),

World Scientific Publ.,

Singapore, 2012, pp. 119--136.

bibitem{Ol}

textsc{Z. Olszak}: textit{On almost cosymplectic manifolds}. Kodai Mathematical Journal {bf 4} (1981), 239--250.

bibitem{Sa80}

textsc{S. Sasaki}: textit{On paracontact Riemannian manifolds}.

TRU Mathematics {bf 16} (1980), 75--86.

bibitem{Sato76}

textsc{I. Sat={o}}: textit{On a structure similar to the almost contact structure}.

Tensor (N.S.) {bf 30} (1976), 219--224.

bibitem{Sato77}

textsc{I. Sat={o}}: textit{On a structure similar to almost contact structure II}.

Tensor (N.S.) {bf 31} (1977), 199--205.

bibitem{Sato78}

textsc{I. Sat={o}}: textit{On a Riemannian manifold admitting a certain vector field}.

Kodai Mathematical Seminar Reports {bf 29} (1978), 250--260.

bibitem{SatoMats79}

textsc{I. Sat={o} {rm and} K. Matsumoto}: textit{On P-Sasakian manifolds satisfying certain conditions}.

Tensor (N.S.) {bf 33} (1979), 173--178.

bibitem{ZamNak}

textsc{S. Zamkovoy {rm and} G. Nakova}: textit{The decomposition of almost paracontact metric manifolds in eleven classes revisited}.

Journal of Geo-metry {bf 109:18} (2018), https://doi.org/10.1007/s00022-018-0423-5


Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)