SOME COMMON FIXED POINT RESULTS FOR RATIONAL CONTRACTION TYPE VIA THE C-CLASS FUNCTIONS ON METRIC SPACES

Nguyen Thi Thanh Ly, Nguyen Trung Hieu

DOI Number
https://doi.org/10.22190/FUMI1902231L
First page
231
Last page
252

Abstract


The purpose of this paper is to prove some common fixed point results for rational contraction type via the C-class functions on metric spaces. As an application, we study the existence of solutions to the system of nonlinear integral equations.


Keywords

Common fixed point; rational contraction mappings; triangular -orbital admissible mapping; contraction; integral equations.

Keywords


common fixed point, rational contraction mappings, triangular $\alpha$-orbital admissible mapping respect to $\eta,$ $\alpha$-$\eta$-$\psi$-$\varphi$-$F$-contraction type

Full Text:

PDF

References


A. Ansari and K. Kaewcharoen, emph{href{AK2016}{ $mathcal{C}$-class

functions and fixed point theorems for generalized

$alpha$-$eta$-$psi$-$varphi$-$F$-contraction type mappings in $alpha$-$eta$ complete metric spaces}}, J. Nonlinear Sci. Appl. textbf{9}

(2016), 4177 -- 4190.

S. Banach, emph{href{B1992}{Sur les operations dans les ensembles abstraits

et leur application aux equation integrals}}, Fund. Math. textbf{3} (1992),

-- 181.

M. Berzig and E. Karapinar, emph{href{BK2015}{Note on "Modified $alpha$-$psi$-contractive mappings with applications" }}, Thai. j. Math textbf{13} (2015), no.~1, 147 -- 152.

S. Chandok and E. Karapinar, emph{href{CK2013-fixed point

rational.pdf}{Common fixed point of generalized rational type contraction

mappings in partially ordered metric spaces}}, Thai J. Math. textbf{11}

(2013), no.~2, 251 -- 260.

S. H. Cho, J. S. Bae, and E. Karapinar, emph{href{CBK2013}{ Fixed point

theorems for $alpha$-Geraghty contraction type maps in metric spaces}},

Fixed Point Theory Appl. (2013), 1 -- 11.

P. Chuadchawna, A. Kaewcharoen, and S. Plubtieng, emph{href{CKPS2016}{Fixed

point theorems for generalized $alpha$-$eta$-$psi$-Geraghty contraction

type mappings in $alpha$-$eta$-complete metric spaces}}, J. Nonlinear Sci.

Appl. textbf{9} (2016), 471 -- 485.

M. Geraghty, emph{href{MG1973}{ On contractive mappings}}, Proc. Amer. Math.

Soc. textbf{40} (1973), 604 -- 608.

J. Harjani, B. L$'$opez, and K. Sadarangani, emph{href{HLS2010}{ A fixed

point theorem for mappings satisfying a contractive condition of rational

type on a partially ordered metric spaces}}, Abstr. Appl. Anal. (2010),

no.~2010, 1 -- 8.

N. T. Hieu and N. V. Dung, emph{href{HD2015}{Some fixed point results for

generalized rational type contraction mappings in ordered metric spaces}},

Facta Univ. Ser. Math. Inform. textbf{30} (2015), no.~1, 49 -- 66.

N. Hussain, M. A. Kutbi, and P. Salimi, emph{href{HKS2014}{Fixed point theory

in $alpha$-complete metric spaces with applications}}, Abstr. Appl. Anal.

(2014), 1 -- 11.

D. S. Jaggi, emph{href{J1977}{Some unique fixed point theorems}}, Indian J.

Pure Appl. Math. textbf{9} (1977), 223 -- 230.

E. Karapinar, emph{href{EK2014}{$alpha$-$psi$-Geraghty contraction type

mappings and some related fixed point results}}, Filomat textbf{28} (2014),

-- 48.

N. V. Luong and N. X. Thuan, emph{href{LT2011}{Fixed point theorems for

generalized weak contractions satisfying rational expressions in ordered

metric spaces}}, Fixed Point Theory Appl. textbf{2011:46} (2011), 1 -- 10.

O. Popescu, emph{href{P2014}{Some new fixed point theorems for $alpha$-Geraghty contraction type maps in metric spaces}}, Fixed Point

Theory Appl. textbf{2014} (2014), 1 -- 12.




DOI: https://doi.org/10.22190/FUMI1902231L

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)