SOME COMMON FIXED POINT RESULTS FOR RATIONAL CONTRACTION TYPE VIA THE C-CLASS FUNCTIONS ON METRIC SPACES
Abstract
The purpose of this paper is to prove some common fixed point results for rational contraction type via the C-class functions on metric spaces. As an application, we study the existence of solutions to the system of nonlinear integral equations.
Keywords
Keywords
Full Text:
PDFReferences
A. Ansari and K. Kaewcharoen, emph{href{AK2016}{ $mathcal{C}$-class
functions and fixed point theorems for generalized
$alpha$-$eta$-$psi$-$varphi$-$F$-contraction type mappings in $alpha$-$eta$ complete metric spaces}}, J. Nonlinear Sci. Appl. textbf{9}
(2016), 4177 -- 4190.
S. Banach, emph{href{B1992}{Sur les operations dans les ensembles abstraits
et leur application aux equation integrals}}, Fund. Math. textbf{3} (1992),
-- 181.
M. Berzig and E. Karapinar, emph{href{BK2015}{Note on "Modified $alpha$-$psi$-contractive mappings with applications" }}, Thai. j. Math textbf{13} (2015), no.~1, 147 -- 152.
S. Chandok and E. Karapinar, emph{href{CK2013-fixed point
rational.pdf}{Common fixed point of generalized rational type contraction
mappings in partially ordered metric spaces}}, Thai J. Math. textbf{11}
(2013), no.~2, 251 -- 260.
S. H. Cho, J. S. Bae, and E. Karapinar, emph{href{CBK2013}{ Fixed point
theorems for $alpha$-Geraghty contraction type maps in metric spaces}},
Fixed Point Theory Appl. (2013), 1 -- 11.
P. Chuadchawna, A. Kaewcharoen, and S. Plubtieng, emph{href{CKPS2016}{Fixed
point theorems for generalized $alpha$-$eta$-$psi$-Geraghty contraction
type mappings in $alpha$-$eta$-complete metric spaces}}, J. Nonlinear Sci.
Appl. textbf{9} (2016), 471 -- 485.
M. Geraghty, emph{href{MG1973}{ On contractive mappings}}, Proc. Amer. Math.
Soc. textbf{40} (1973), 604 -- 608.
J. Harjani, B. L$'$opez, and K. Sadarangani, emph{href{HLS2010}{ A fixed
point theorem for mappings satisfying a contractive condition of rational
type on a partially ordered metric spaces}}, Abstr. Appl. Anal. (2010),
no.~2010, 1 -- 8.
N. T. Hieu and N. V. Dung, emph{href{HD2015}{Some fixed point results for
generalized rational type contraction mappings in ordered metric spaces}},
Facta Univ. Ser. Math. Inform. textbf{30} (2015), no.~1, 49 -- 66.
N. Hussain, M. A. Kutbi, and P. Salimi, emph{href{HKS2014}{Fixed point theory
in $alpha$-complete metric spaces with applications}}, Abstr. Appl. Anal.
(2014), 1 -- 11.
D. S. Jaggi, emph{href{J1977}{Some unique fixed point theorems}}, Indian J.
Pure Appl. Math. textbf{9} (1977), 223 -- 230.
E. Karapinar, emph{href{EK2014}{$alpha$-$psi$-Geraghty contraction type
mappings and some related fixed point results}}, Filomat textbf{28} (2014),
-- 48.
N. V. Luong and N. X. Thuan, emph{href{LT2011}{Fixed point theorems for
generalized weak contractions satisfying rational expressions in ordered
metric spaces}}, Fixed Point Theory Appl. textbf{2011:46} (2011), 1 -- 10.
O. Popescu, emph{href{P2014}{Some new fixed point theorems for $alpha$-Geraghty contraction type maps in metric spaces}}, Fixed Point
Theory Appl. textbf{2014} (2014), 1 -- 12.
DOI: https://doi.org/10.22190/FUMI1902231L
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)