On frequently hypercyclic abstract higher-order differential equations
Abstract
In this note, we analyze frequently hypercyclic solutions of abstract higher-order differential equations in separable infinite-dimensional complex Banach spaces.
We essentially apply results from the theory of $C$-regularized semigroups, providing several illustrative examples and possible applications.
Keywords
Keywords
Full Text:
PDFReferences
begin{thebibliography}{999999}
bibitem{bay1}
{sc F. Bayart {rm and} S. Grivaux }: textit{Frequently hypercyclic operators}. Trans. Amer. Math. Soc. textbf{358} (2006), 5083--5117.
bibitem{Baya1}
{sc F. Bayart {rm and} 'E. Matheron:}
textit{(Non)-weakly mixing operators and hypercyclicity sets}.
Ann. Inst. Fourier, Grenoble textbf{59} (2009), 1--35.
bibitem{Bay}
{sc F. Bayart {rm and} 'E. Matheron:}
textit{Dynamics of Linear Operators}.
Cambridge University Press, Cambridge, 2009.
bibitem{boni}
{sc A. Bonilla {rm and} K.-G. Grosse-Erdmann:}
textit{Frequently hypercyclic operators and vectors}.
Ergodic Theory Dynam. Systems textbf{27} (2007), 383--404.
bibitem{pako}
{sc J. A. Conejero, C. Lizama, {rm and} F. Rodenas:}
emph{Chaotic behaviour of the solutions of the Moore-Gibson-
Thompson equation.}
Appl. Math. Inf. Sci. {bf 9} (2015), 1--6.
bibitem{pako1}
{sc J. A. Conejero, F. Rodenas, {rm and} M. Trujillo:}
textit{Chaos for the hyperbolic heat transfer equation.}
Discr. Cont. Dyn. Syst. {bf35} (2015), 653--668.
bibitem{pako2}
{sc J. A. Conejero, C. Lizama, {rm and} M. Murillo-Arcila:}
textit{Chaotic semigroups from the second order partial differential equations.}
J. Math. Anal. Appl. {bf 456} (2017), 402--411.
bibitem{l1}
{sc R. deLaubenfels:}
textit{Existence Families, Functional Calculi and Evolution Equations}.
Lect. Notes Math. textbf{1570}, Springer-Verlag, New York, 1994.
bibitem{fund}
{sc W. Desch, W. Schappacher, {rm and }G. F. Webb:}
textit{Hypercyclic and chaotic semigroups of linear operators.}
Ergodic Theory Dynam. Systems textbf{17} (1997), 1--27.
bibitem{samir}
{sc S. El Mourchid:}
textit{The imaginary point spectrum and hypercyclicity}.
Semigroup Forum textbf{76} (2006), 313--316.
bibitem{engel}
{sc K. J. Engel {rm and} R. Nagel:}
textit{One-Parameter Semigroups for Linear Evolution
Equations.} Berlin, Heidelberg, New York, Springer, 2000.
bibitem{engel-mb}
{sc K. J. Engel:}
textit{Operator Matrices and Systems of Evolution Equations.}
Book Manuscript, 1996.
bibitem{Grosse}
{sc K.-G. Grosse-Erdmann {rm and} A. Peris:}
textit{Linear Chaos. Universitext}.
Springer, London, 2011.
bibitem{ji}
{sc L. Ji {rm and} A. Weber:}
textit{Dynamics of the heat semigroup on symmetric spaces}.
Ergodic Theory Dynam. Systems textbf{30} (2010), 457--468.
bibitem{knjigah}
{sc M. Kosti'c:}
textit{Generalized Semigroups and Cosine Functions}.
Mathematical Institute SANU, Belgrade, 2011.
bibitem{knjigaho}
{sc M. Kosti'c:}
textit{Abstract Volterra Integro-Differential Equations}.
CRC Press, Boca Raton, Fl., 2015.
bibitem{cds}
{sc M. Kosti'c:}
textit{Chaotic $C$-distribution semigroups}.
Filomat {bf 23} (2009), 51--65.
bibitem{azjm}
{sc M. Kosti'c:}
textit{${mathcal D}$-Hypercyclic and ${mathcal D}$-topologically mixing properties of
degenerate multi-term fractional differential equations.}
Azerbaijan J. Math. textbf{5} (2015), 78--95.
bibitem{tajwan}
{sc M. Kosti'c:}
textit{Frequently hypercyclic $C$-distribution semigroups and their generalizations.}
Taiwanese J. Math., submitted.% (https://www.researchgate.net/publication/324729384).
bibitem{prcko-fuck it}
{sc M. Kosti'c:}
textit{On frequently hypercyclic $C$-distribution cosine functions in Fr' echet spaces.}
Mat. Bilten, submitted.% (https://www.researchgate.net/publication/326190577).
bibitem{man-peris}
{sc E. M. Mangino {rm and} A. Peris:}
textit{Frequently hypercyclic semigroups}.
Studia Math. textbf{202} (2011), 227--242.
bibitem{man-marina}
{sc E. M. Mangino {rm and} M. Murillo-Arcila:}
textit{Frequently hypercyclic translation semigroups.}
Studia Math. {bf 227} (2015), 219--238.
bibitem{neubrander}
{sc F. Neubrander:}
textit{Wellposedness of higher order abstract Cauchy
problems.}
Trans. Amer. Math. Soc. {bf 295} (1986), 257--290.
bibitem{x263}
{sc T.-J. Xiao {rm and } J. Liang}:
textit{The Cauchy Problem for Higher-Order Abstract Differential Equations}. Springer-Verlag,
Berlin, 1998.
end{thebibliography}
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)