On frequently hypercyclic abstract higher-order differential equations

Belkacem Chaouchi, Marko Kostic

DOI Number
-
First page
627
Last page
636

Abstract


In this note, we analyze frequently hypercyclic solutions of abstract higher-order differential equations in separable infinite-dimensional complex Banach spaces.

We essentially apply results from the theory of $C$-regularized semigroups, providing several illustrative examples and possible applications.


Keywords

Higher-order differential equations; regularized semigroups; complex Banach space

Keywords


frequent hypercyclicity, abstract higher-order differential equations

Full Text:

PDF

References


begin{thebibliography}{999999}

bibitem{bay1}

{sc F. Bayart {rm and} S. Grivaux }: textit{Frequently hypercyclic operators}. Trans. Amer. Math. Soc. textbf{358} (2006), 5083--5117.

bibitem{Baya1}

{sc F. Bayart {rm and} 'E. Matheron:}

textit{(Non)-weakly mixing operators and hypercyclicity sets}.

Ann. Inst. Fourier, Grenoble textbf{59} (2009), 1--35.

bibitem{Bay}

{sc F. Bayart {rm and} 'E. Matheron:}

textit{Dynamics of Linear Operators}.

Cambridge University Press, Cambridge, 2009.

bibitem{boni}

{sc A. Bonilla {rm and} K.-G. Grosse-Erdmann:}

textit{Frequently hypercyclic operators and vectors}.

Ergodic Theory Dynam. Systems textbf{27} (2007), 383--404.

bibitem{pako}

{sc J. A. Conejero, C. Lizama, {rm and} F. Rodenas:}

emph{Chaotic behaviour of the solutions of the Moore-Gibson-

Thompson equation.}

Appl. Math. Inf. Sci. {bf 9} (2015), 1--6.

bibitem{pako1}

{sc J. A. Conejero, F. Rodenas, {rm and} M. Trujillo:}

textit{Chaos for the hyperbolic heat transfer equation.}

Discr. Cont. Dyn. Syst. {bf35} (2015), 653--668.

bibitem{pako2}

{sc J. A. Conejero, C. Lizama, {rm and} M. Murillo-Arcila:}

textit{Chaotic semigroups from the second order partial differential equations.}

J. Math. Anal. Appl. {bf 456} (2017), 402--411.

bibitem{l1}

{sc R. deLaubenfels:}

textit{Existence Families, Functional Calculi and Evolution Equations}.

Lect. Notes Math. textbf{1570}, Springer-Verlag, New York, 1994.

bibitem{fund}

{sc W. Desch, W. Schappacher, {rm and }G. F. Webb:}

textit{Hypercyclic and chaotic semigroups of linear operators.}

Ergodic Theory Dynam. Systems textbf{17} (1997), 1--27.

bibitem{samir}

{sc S. El Mourchid:}

textit{The imaginary point spectrum and hypercyclicity}.

Semigroup Forum textbf{76} (2006), 313--316.

bibitem{engel}

{sc K. J. Engel {rm and} R. Nagel:}

textit{One-Parameter Semigroups for Linear Evolution

Equations.} Berlin, Heidelberg, New York, Springer, 2000.

bibitem{engel-mb}

{sc K. J. Engel:}

textit{Operator Matrices and Systems of Evolution Equations.}

Book Manuscript, 1996.

bibitem{Grosse}

{sc K.-G. Grosse-Erdmann {rm and} A. Peris:}

textit{Linear Chaos. Universitext}.

Springer, London, 2011.

bibitem{ji}

{sc L. Ji {rm and} A. Weber:}

textit{Dynamics of the heat semigroup on symmetric spaces}.

Ergodic Theory Dynam. Systems textbf{30} (2010), 457--468.

bibitem{knjigah}

{sc M. Kosti'c:}

textit{Generalized Semigroups and Cosine Functions}.

Mathematical Institute SANU, Belgrade, 2011.

bibitem{knjigaho}

{sc M. Kosti'c:}

textit{Abstract Volterra Integro-Differential Equations}.

CRC Press, Boca Raton, Fl., 2015.

bibitem{cds}

{sc M. Kosti'c:}

textit{Chaotic $C$-distribution semigroups}.

Filomat {bf 23} (2009), 51--65.

bibitem{azjm}

{sc M. Kosti'c:}

textit{${mathcal D}$-Hypercyclic and ${mathcal D}$-topologically mixing properties of

degenerate multi-term fractional differential equations.}

Azerbaijan J. Math. textbf{5} (2015), 78--95.

bibitem{tajwan}

{sc M. Kosti'c:}

textit{Frequently hypercyclic $C$-distribution semigroups and their generalizations.}

Taiwanese J. Math., submitted.% (https://www.researchgate.net/publication/324729384).

bibitem{prcko-fuck it}

{sc M. Kosti'c:}

textit{On frequently hypercyclic $C$-distribution cosine functions in Fr' echet spaces.}

Mat. Bilten, submitted.% (https://www.researchgate.net/publication/326190577).

bibitem{man-peris}

{sc E. M. Mangino {rm and} A. Peris:}

textit{Frequently hypercyclic semigroups}.

Studia Math. textbf{202} (2011), 227--242.

bibitem{man-marina}

{sc E. M. Mangino {rm and} M. Murillo-Arcila:}

textit{Frequently hypercyclic translation semigroups.}

Studia Math. {bf 227} (2015), 219--238.

bibitem{neubrander}

{sc F. Neubrander:}

textit{Wellposedness of higher order abstract Cauchy

problems.}

Trans. Amer. Math. Soc. {bf 295} (1986), 257--290.

bibitem{x263}

{sc T.-J. Xiao {rm and } J. Liang}:

textit{The Cauchy Problem for Higher-Order Abstract Differential Equations}. Springer-Verlag,

Berlin, 1998.

end{thebibliography}


Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)