ON GENERALIZED FIBONACCI DIFFERENCE SPACE DERIVED FROM THE ABSOLUTELY p− SUMMABLE SEQUENCE SPACES

Gülsen Kılınç

DOI Number
https://doi.org/10.22190/FUMI1905903K
First page
903
Last page
925

Abstract


In this study, it is specified \emph{the sequence space} $l\left( F\left( r,s\right),p\right) $, (where $p=\left( p_{k}\right) $ is any bounded sequence of positive real numbers) and researched some algebraic and topological features of this space. Further, $\alpha -,$ $\beta -,$ $\gamma -$ duals and its Schauder Basis are given. The classes of \emph{matrix transformations} from the space $l\left( F\left( r,s\right) ,p\right) $ to the spaces $l_{\infty },c,$ and $% c_{0}$ are qualified. Additionally, acquiring qualifications of some other \emph{matrix transformations} from the space $l\left( F\left( r,s\right) ,p\right) $ to the \emph{Euler, Riesz, difference}, etc., \emph{sequence spaces} is the other result of the paper.


Keywords

Matrix transformations; sequence space; Schauder Basis.

Keywords


Generalized Fibonacci Matrix, paranormed sequence spaces, alpha-, beta-, gamma-duals, matrix transformations in sequence spaces

Full Text:

PDF

References


bibitem{basar1}

{sc F. Bac{s}ar {rm and} B. Altay}: textit{On the spaces of sequences of $p-$bounded variation and related matrix mappings}. Ukrainian Math. J. {bf 55:1} (2003),136--147.

bibitem{Ng}

{sc P. N. Ng. {rm and} P. Y. Lee}: textit{TCesaro sequence spaces of non-absolute type}. Comment. Math. Prace Mat. {bf 20:2} (1978), 429--433.

bibitem{murat}

{sc M. Candan {rm and} E. E. Kara}: textit{A Study On topological and geometrical characteristics of new Banach Sequence Spaces}. Gulf Journal Of Mathematics {bf 3:4} (2015), 67--84.

bibitem{kara1}

{sc E. E. Kara}: textit{Some topological and geometrical properties of new Banach sequence spaces}.J. Inequal. Appl. {bf 38} (2013), 1--15.

bibitem{kizmaz}

{sc H. Ki zmaz}: textit{On certain sequence spaces}. Canad. Math. Bull. {bf 24:2} (1981), 169--176.

bibitem{basar2}

{sc B. Altay, F. Bac{s}ar {rm and} M. Mursaleen }: textit{On the Euler sequence spaces which include the spaces $l_{p}$ and $l_{infty }$}. Inform. Sci. {bf 176:10} (2006), 1450--1462.

bibitem{basar3}

{sc B. Altay {rm and} F. Bac{s}ar }: textit{ On the Paranormed Riesz sequence spaces of non-absolute type}. Southeast Asian Bull. Math.{bf 26:5} (2002), 701--715.

bibitem{basar4}

{sc B. Altay {rm and} F. Bac{s}ar }: textit{Some Euler sequence spaces of non-absolute type}. Ukrainian Math. J. {bf 57:1} (2005), 1--17

bibitem{basar5}

{sc M. c{S}eng"{o}n"{u}l {rm and} F. Bac{s}ar }: textit{Some new Cesaro sequence spaces of non-absolute type which include the spaces $c_{0}$ and $c$}. Soochow J. Math. {bf 31:1} (2005), 107--119.

bibitem{basar6}

{sc B. Altay {rm and} F. Bac{s}ar }: textit{Some Paranormed Riesz sequence spaces of non-absolute type}. Southeast Asian Bull. Math. {bf 30:5} (2006), 591--608.

bibitem{metin1}

{sc M. Bac{s}ari r, F. Bac{s}ar {rm and} E. E. Kara}: textit{On the spaces of Fibonacci Difference null and convergent sequences}. arXiv:1309.0150v1 [math. FA], 2013.

bibitem{nanda}

{sc B. Choudhary {rm and} S. Nanda}: textit{Functional Analysis with Applications}. JohnWiley , Sons, NewDelhi, India, 1989.

bibitem{maddox}

{sc I. J. Maddox}: textit{Spaces of strongly summable sequences}.Quart. J. Math. Oxford. {bf 18:2} (1967), 345--355.

bibitem{simons}

{sc S. Simons}: textit{The sequence spaces $ell (p_{v})$ and $m(p_{v})$}. Proc. London Math. Soc.

{bf 15:3} (1965), 422--436.

bibitem{nakano}

{sc H. Nakano}: textit{Modulared sequence spaces}. Proc. Japan Acad. {bf 27:2} (1951), 508--512.

bibitem{mursaleen1}

{sc M. Mursaleen}: textit{On some geometric properties of a sequence space related to $l_{p}$}. Bull. Aust. Math. Soc. {bf 67} (2003), 343--347.

bibitem{basar7}

{sc C. Aydi n {rm and} F. Bac{s}ar}: textit{Some new sequence spaces which include the spaces $l_{p}$ and $l_{infty }$}. Demonstr. Math. {bf 38} (2005), 641--656.

bibitem{basar8}

{sc B. Altay {rm and} F. Bac{s}ar }: textit{The matrix domain and the fine spectrum of the difference operator $Delta $ on the sequence space $l_{p}$; $(0

bibitem{basar9}

{sc F. Bac{s}ar}: textit{Summability Theory and Its Applications,}. Bentham Science Publishers, e-books, Monographs, xi+405 pp., .{I}stanbul, (2012)

ISB:978-1-60805-252-3,

bibitem{mursaleen2}

{sc M. Mursaleen {rm and} A. K. Noman }: textit{On some

new sequence spaces of non-absolute type related to the spaces $l_{p}$ and $l_{infty }$,I}. Filomat. {bf 25:2} (2011), 33--51.

bibitem{mursaleen3}

{sc M. Mursaleen {rm and} A. K. Noman}: textit{On some new sequence spaces of non-absolute type related to the spaces $l_{p}$ and $l_{infty }$,II}. Mathematical Communications. {bf 16:2} (2011), 383--398.

bibitem{candan1}

{sc M. Candan {rm and} K. Kayaduman}: textit{ Almost convergent sequence space derived by generalized Fibonacci matrix and Fibonacci core}. Brithish J. Math. Comput. Sci{bf 7:2} (2015), 150--167.

bibitem{candan2}

{sc M. Candan}: textit{A new sequence space isomorphic to the space $l(p)$ and compact operators}. J. Math. Comput. Sci {bf 4:2} (2014), 306--334.

bibitem{candan3}

{sc M. Candan}: textit{A new approach on the spaces of generalized Fibonacci difference null and convergent sequences}. Math. Aeterna. {bf 1:5} (2015), 191--210.

bibitem{mursaleen4}

{sc A. Alotaibi, M. Mursaleen, B. A. Alamri {rm and} S. A. Mohiuddine }: textit{ Compact operators on some Fibonacci difference sequence spaces}. Journal of Inequalities and Applications. (2015), 2015:203 DOI10.1186s13660-015-0713-5.

bibitem{murat2}

{sc M. Candan}: textit{ Domain of Double Sequential Band Matrix in the Spaces of Convergent and Null

Sequences}. Advanced in Difference Equations. {bf 1} (2014), 1--18.

bibitem{malkowsky}

{sc E. Malkowsky {rm and} V. Rakov{c}evi'{c}}: textit{An Introduction into the theory of sequence spaces and measures of noncompactness}. Zbornik Radova, Matemativ{c}ki Institut SANU, Belgrade, {bf 9:17} (2000), 143--234.

bibitem{Wilansky}

{sc A. Wilansky}: textit{Functional Analysis}. Blaisdell Publishing Company, New York- Toronto-London, 1964.

bibitem{Lascarides}

{sc C. G. Lascarides {rm and} I. J. Maddox}: textit{Matrix transformations between some classes of sequences}. Proc. Camb. Phil. Soc. {bf 68} (1970), 99--104.

bibitem{erdmann}

{sc K. G. Grosse- Erdman}: textit{Matrix transformations between the sequence spaces of Maddox}. J. Math. Anal. Apply {bf 180} (1993), 223--238.

bibitem{malkowsky2}

{sc A. Jarrah {rm and} E. Malkowsky}: textit{BK-spaces, bases and linear operators}. Rendiconti Circ. Mat. Palermo II {bf 52} (1990), 177--191.

bibitem{capan}

{sc H. c{C}apan {rm and} F. Bac{s}ar}: textit{Domain of The Double Band Matrix Defined By Fibonacci Numbers in The Maddox's Space $l({p})$} Electronic Journal of Mathematical Analysis and Applications {bf 3:2} (2015), 31--45.

bibitem{murat1}

{sc M. Candan}: textit{Almost convergence and double

sequential band matrix}. Acta Math. Scientia. {bf 34:2} (2014), 354--366.

bibitem{murat3}

{sc M. Candan {rm and} A. G"{u}nec{s}}: textit{Paranormed sequence spaces of Non Absolute Type Founded Using Generalized Difference Matrix}. Proceedings of the National Academy of Sciences; India Section A:Physical Sciences. {bf 85:2} (2014), 269--276.




DOI: https://doi.org/10.22190/FUMI1905903K

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)