CURVES OF CONSTANT BREADTH ACCORDING TO DARBOUX FRAME IN GALILEAN SPACE G3>
Abstract
In this work, the curves of constant breadth according to Darboux frame in the 3-dimensional Galilean Space are investigated. Firstly the curves of constant breadth according to Darboux frame are determined then the differential equation of the constant breadth curve with this frame is found. After that some special cases of this differential equation are researched.
Keywords
Keywords
Full Text:
PDFReferences
A. Magden and O.Kose: On the curves of constant breadth in E4 space, Turkish J. Math., 21, (1997), 277-284.
A.O. Ogrenmis, M. Ergut, and M. Bektas: On the helices in the Galilean Space G3 , Iranian J. Sci. Tech. A., 31, (2007), 177-181.
B. Altunkaya and F. Kahraman Aksoyak: Curves of constant breadth according to Darboux frame, Commun. Fac. Sci. Univ. Ank. Series A1.,66, (2017), 44-52.
D.J. Struik: Differential geometry in the large, Bull. Amer. Math. Soc., 37, (1931), 49-62.
D.W. Yoon: Curves of constant breadth in Galilean 3-space, Applied Mathematical Sciences, 8, (2014), 7013-7018.
F. Reuleaux: The Kinematics of Machinery, Trans. By A. B. W. Kennedy, Dover, Pub. Nex York, (1963).
H. Gun Bozok and H. Oztekin: Some characterization of curves of constant breadth according to Bishop frame in E3 space, i-manager’s Journal on Mathematics, 2, (2013), 7-11.
H. Gun Bozok, S. Aykurt Sepet and M. Ergut: Curves of constant breadth according to type-2 bishop frame in E3, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 66, (2017), 206-212.
H. Oztekin, T. Korpinar and G. Altay: Constant ratio curves in the four dimen- sional Galilean Space, South Asian Journal of Mathematics, 2, (2017), 148-154.
H. Tanaka: Kinematics Design of Cam Follower Systems, Ph. D. Thesis, University of Columbia , (1976).
I. Kamenarovic: Existence Theorems for Ruled Surfaces in the Galilean Space G3. Rad HAZU Math., 10, (1991), 183-196.
I.M. Yaglom: A Simple Non-Euclidean Geometry and Its Physical Basis, Springer-Verlag, New York, (1979).
L. Euler: De curvis triangularibus, Acta Acad. Prtropol., (1780), 3-30.
M. Fujivara: On Space Curves of Constant Breadth , Tohoku Math. J., (1914), 179-184.
M. Kazaz, M. Onder and H. Kocayigit: Spacelike curves of constant breadth in Minkowski 4-space, Int. J. Math. Anal., 2,(2008), 1061-1068.
O. Kose: On space curves of constant breadth, Doga Mat., 10, (1986), 11-14.
O.Röschel: Die Geometrie des Galileischen Raumes, Habilitationsschrift, Leoben, (1984).
T.Sahin: Intrinsic equations for a generalized relaxed elastic line on an oriented sur- face in the Galilean space, Acta Mathematica Scientia, 33, (2013), 701-711.
U. Ozturk, E.B. Koc Ozturk, and E.Nesovic: On equiform Darboux helices in Galilean 3-space, Math. Commun., 23, (2018), 145-159.
W.Blaschke: Konvexe Bereiche gegebener konstanter Breite und kleinsten Inhalts, Math. Ann., 76, (1915), 504-513.
Y. Unluturk, M. Dede, ü.Z. Savcy´ and C. Ekici: On curves of constant breadth in G1, TWMS J. App. Eng. Math., 6, (2016), 64-69.
DOI: https://doi.org/10.22190/FUMI1905837G
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)