BOUNDEDNESS FOR TOEPLITZ TYPE OPERATOR ASSOCIATED WITH SINGULAR INTEGRAL OPERATOR WITH VARIABLE CALDERÓN-ZYGMUND KERNEL
Abstract
In this paper, we establish sharp maximal function inequalities for the Toeplitz-type operator associated with the singular integral operator with a variable Calderón-Zygmund kernel. As an application, we obtain the boundedness of the operator on Lebesgue, Morrey and Triebel-Lizorkin spaces.
Keywords
Keywords
Full Text:
PDFReferences
A. P. Calder´on and A. Zygmund, On singular integrals with variable kernels, Appl. Anal.,
(1978), 221-238.
S. Chanillo, A note on commutators, Indiana Univ. Math. J., 31(1982), 7-16.
R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in
several variables, Ann. of Math., 103(1976), 611-635.
G. Di FaZio and M. A. Ragusa, Commutators and Morrey spaces, Boll. Un. Mat. Ital.,
-A(7)(1991), 323-332.
G. Di Fazio and M. A. Ragusa, Interior estimates in Morrey spaces for strong solutions
to nondivergence form equations with discontinuous coefficients, J. Func. Anal.,
(1993), 241-256.
J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related
topics, North-Holland Math.,16, Amsterdam, 1985.
S. Janson, Mean oscillation and commutators of singular integral operators, Ark. Math.,
(1978), 263-270.
S. Krantz and S. Li, Boundedness and compactness of integral operators on spaces of
homogeneous type and applications, J. of Math. Anal. Appl., 258(2001), 629-641.
Y. Lin and S. Z. Lu, Toeplitz type operators associated to strongly singular integral
operator, Sci. in China(ser.A), 36(2006), 615-630.
L. Z. Liu, Interior estimates in Morrey spaces for solutions of elliptic equations and
weighted boundedness for commutators of singular integral operators, Acta Math. Scientia,
(B)(1)(2005), 89-94.
L. Z. Liu, The continuity for multilinear singular integral operators with variable
Calder´on-Zygmund kernel on Hardy and Herz spaces, Siberia Electronic Math. Reports,
(2005), 156-166.
L. Z. Liu, Good λ estimate for multilinear singular integral operators with variable
Calder´on-Zygmund kernel, Kragujevac J. of Math., 27(2005), 19-30.
L. Z. Liu, Weighted estimates of multilinear singular integral operators with variable
Calder´on-Zygmund kernel for the extreme cases, Vietnam J. of Math., 34(1)(2006),
-61.
S. Z. Lu, D. C. Yang and Z. S. Zhou, Oscillatory singular integral operators with
Calder´on-Zygmund kernels, Southeast Asian Bull. of Math., 23(1999), 457-470.
T. Mizuhara, Boundedness of some classical operators on generalized Morrey spaces, in
”Harmonic Analysis”, Proceedings of a conference held in Sendai, Japan, 1990, 183-189.
M. Paluszynski, Characterization of the Besov spaces via the commutator operator of
Coifman, Rochberg and Weiss, Indiana Univ. Math. J., 44(1995), 1-17.
J. Peetre, On convolution operators leaving L
p,λ-spaces invariant, Ann. Mat. Pura.
Appl., 72(1966), 295-304.
J. Peetre, On the theory of L
p,λ-spaces, J. Func. Anal., 4(1969), 71-87.
C. P´erez, Endpoint estimate for commutators of singular integral operators, J. Func.
Anal., 128(1995), 163-185.
C. P´erez and R. Trujillo-Gonzalez, Sharp weighted estimates for multilinear commutators,
J. London Math. Soc., 65(2002), 672-692.
E. M. Stein, Harmonic analysis: real variable methods, orthogonality and oscillatory
integrals, Princeton Univ. Press, Princeton NJ, 1993.
H. Xu and L. Z. Liu., Weighted boundedness for multilinear singular integral operator
with variable Calder´on-Zygmund kernel, African Diaspora J. of Math., 6(1)(2008), 1-12.
DOI: https://doi.org/10.22190/FUMI1903399Z
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)