NEW INEQUALITIES ON LIPSCHITZ FUNCTIONS
Abstract
In this study, some inequalities of Hermite Hadamard type obtained for p-convex functions are given for Lipschitz mappings. Also, some applications for special means have been given.
Keywords
Full Text:
PDFReferences
bibitem{DCK00} S.S. DRAGOMIR, Y.J. CHO and S.S. KIM: textit{Inequalities
of Hadamard's type for Lipschitzian mappings and their applications}.
Journal of Mathematical Analysis and Applications, textbf{245}(2), 489-501,
bibitem{DP02} S.S. DRAGOMIR, C.E.M. PEARCE: textit{Selected Topics on
Hermite-Hadamard Inequalities and Its Applications.} RGMIA Monograph, 2002.
bibitem{D02} S.S. DRAGOMIR: textit{On Some New inequalities of
Hermite-Hadamrd Type for }$m$textit{-Convex Functions}. Tamkang J. of
Math., textbf{33}(1), 45-55, 2002.
bibitem{H93} J. HADAMARD: textit{Etude sur les proprietes des fonctions
entieres en particulier d'une fonction consideree par Riemann.} J. Math.
Pures Appl. textbf{58}, 171-215, 1893.
bibitem{I14} .{I}. .{I}c{S}CAN: textit{Hermite-Hadamard type
inequalities for harmonically convex functions.} Hacettepe Journal of
Mathematics and Statistics, textbf{43}(6), 935-942, 2014.
bibitem{I14b} .{I}. .{I}c{S}CAN: textit{New general integral
inequalities for Lipschitzian functions via Hadamard fractional integrals},
International Journal of Analysis, volume textbf{2014}, Article ID 353924,
, 2014.
bibitem{I16} .{I}. .{I}c{S}CAN: textit{Ostrowski type inequalities for }%
$p$textit{-convex functions}, New Trends in Mathematical Sciences, textbf{4%
}(3), 140-150, 2016.
bibitem{I16b} .{I}. .{I}c{S}CAN: textit{Hadamard-type and Bullen-type
inequalities for Lipschitzian functions via fractional integrals.}
Mathematical Sciences and Applications E-Notes, textbf{4}(1), 77-87, 2016.
bibitem{IAK19} .{I}. .{I}c{S}CAN, C. ALTUNSOY and M. KADAKAL: textit{%
Some New Inequalities for Lipschitz Functions via a Functional.} G"{U}%
FBED/GUSTIJ, textbf{9}(2), 301-306, 2019.
bibitem{IKA18} .{I}. .{I}c{S}CAN, M. KADAKAL and A. AYDIN: textit{Some
new integral inequalities for Lipschitzian functions.} An International
Journal of Optimization and Control: Theories & Applications, textbf{8}%
(2), 259-265, 2018.
bibitem{KL18} A. KASHURI and R. LIKO: textit{Some }$k$textit{-fractional
integral inequalities of Hermite-Hadamard type concerning twice
differentiable generalized relative semi-(}$r;m,h_{1},h_{2},$textit{%
)-preinvex mappings.} Commun. Optim. Theory 2018, Article ID 6, 2018.
bibitem{KST06} A.A. K.{I}LBAc{S}, H.M. SRIVASTAVA and J. TRUJILLO:
textit{Theory and applications of fractional differential equations.}
Elsevier, Amsterdam, 2006.
bibitem{KI17a} M. KUNT and .{I}. .{I}c{S}CAN: textit{On new
Hermite-Hadamard-Fejer type inequalities for }$p$textit{-convex functions
via fractional integrals.} Communication in Mathematical Modeling and
Applications, textbf{2}(1), 1-15, 2017.
bibitem{KI17b} M. KUNT and .{I}. .{I}c{S}CAN: textit{%
Hermite-Hadamard-Fejer type inequalities for }$p$textit{-convex functions.}
Arab J. Math. Sci., textbf{23}(2), 215-230, 2017.
bibitem{KI17c} M. KUNT and .{I}. .{I}c{S}CAN: textit{Hermite-Hadamard
type inequalities for }$p$textit{-convex functions via fractional integrals.%
} Moroccan J. Pure Appl. Anal., textbf{3}(1), 22-35, 2017.
bibitem{KI18} M. KUNT and .{I}. .{I}c{S}CAN: textit{%
Hermite-Hadamard-Fejer Type Inequalities for p-Convex Functions via
Fractional Integrals.} Iranian Journal of Science and Technology Transaction
A-Science, textbf{42}(4), 2079-2089, 2018.
bibitem{LDM15} M.A. LAT.{I}F, S.S. DRAGOMIR and E. MOMANIAT: textit{Some
Fejer type integral inequalities for geometrically-arithmetically-convex
functions with applications.} RGMIA Research Report Collection, textbf{18},
Article 25, 18 pp., 2015.
bibitem{N00} C.P. NICULESCU: textit{Convexity according to the geometric
mean.} Math. Inequal. Appl., textbf{3}(2), 155-167, 2000.
bibitem{NNI17} M.A. NOOR, K.I. NOOR and S. IFTIKHAR: textit{Inequalities
via strongly p-harmonic log-convex functions.} J. Nonlinear Funct. Anal.
textbf{2017}, Article ID 20, 2017.
bibitem{NNS17} M.A. NOOR, K.I. NOOR, F. SAFDAR: textit{Integral
inequalities via generalized (}$alpha ,m$textit{)-convex functions.} J.
Nonlinear Funct. Anal. textbf{2017}, Article ID 32, 2017.
bibitem{PPT92} J. PEv{C}ARI'{C}, J., F. PROSCHAN and Y.T. TONG: textit{%
Convex Functions, Partial Orderings and Statistical Applications.} Academic
Press, Inc., 469 pp, Boston, 1992.
bibitem{RV73} A.W. ROBERTS and D.E. VARBERG: textit{Convex Functions.}
Academic Press, 300 pp, New York, 1973.
bibitem{S17} H.M. SRIVASTAVA and D. BANSAL: textit{Close-to-convexity of a
certain family of q-Mittag-Leffler functions.} J. Nonlinear Var. Anal.
textbf{1}, 61-69, 2017.
bibitem{YT99} G.S. YANG and K.L. TSENG: textit{On certain integral
inequalities related to Hermite-Hadamard inequalities.} J. Math. Anal.
Appl., textbf{239}, 180-187, 1999.
DOI: https://doi.org/10.22190/FUMI2003577I
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)