RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY KENMOTSU MANIFOLDS

Gülhan Ayar, Mustafa Yıldırım

DOI Number
https://doi.org/10.22190/FUMI1903503A
First page
503
Last page
510

Abstract


In this paper, we study nearly Kenmotsu manifolds with Ricci soliton and we obtain certain conditions about curvature tensors.


Keywords

Contact manifold, Nearly Kenmotsu Manifold, Ricci Solitons.

Full Text:

PDF

References


B. Barua and U. C. De: Characterizations of a Riemannian manifold admitting Ricci solitons. Facta Universitatis(NIS) Ser. Math. Inform. 28(2) (2013), 127–132.

A. M. Blaga and M. Crasmareanu: Torse forming η−Ricci solitons in almost paracontact η−Einstein geometry. Filomat, (to appear).

D. E. Blair: Riemannian geometry of contact and symplectic manifolds. Progress in Mathematics, 203. Birkhuser Boston, Inc., Boston, MA, 2002.

M. M. Boothby and R. C. Wong: On contact manifolds. Ann. Math. 68 (1958), 421–450.

H. D. Cao: Geometry of Ricci solitons. Chinese Ann. Math. Ser. B 27 (2006), 121–142.

T. Chave and G. Valent: Quasi-Einstein metrics and their renoirmalizability properties. Helv. Phys. Acta. 69 (1996), 344–347.

B. Y. Chen: Geometry of Submanifolds. Marcel Dekker, Inc. New York, 1973.

B. Chow and D. Knopf: The Ricci flow: An introduction. Mathematical Surveys and Monographs 110. American Math. Soc., 2004.

U. C. De: Ricci soliton and gradient Ricci soliton on P-Sasakian manifolds. The Aligarh Bull. of Maths. 29 (2010), 29–34.

A. Derdzinski: Compact Ricci solitons. Preprint.

A. Ghosh, R. Sharma and J. T. Cho: Contact metric manifolds with η−parallel torsion tensor. Ann. Glob. Anal. Geom. 34 (2008), 287–299.

R. S. Hamilton: The Ricci flow on surfaces. Math. and General Relativity, Contemporary Math. 71 (1988), 237–262.

T. Ivey: Ricci solitons on compact 3-manifolds. Differential Geo. Appl. 3 (1993), 301–307.

K. Kenmotsu: A class of almost contact Riemannian manifolds. Tohoku Math. J. 24 (1972), 93–103.

B. Najafi and N. H. Kashani: On nearly Kenmotsu Manifolds. Turkish Journal of

Mathematics 37 (6) (2013), 1040–1047.

R. H. Ojha: A note on the M-projective curvature tensor. Indian J. Pure Appl. Math. 8(12) (1975), 1531–1534.

G. Perelman: The entopy formula for the Ricci flow and its geometric applications.

Preprint, http://arxiv.org/abs/math.DG/02111159.

G. P. Pokhariyal and R. S. Mishra: Curvature tensor and their relativistic significance II. Yokohama Mathematical Journal 19 (1971), 97–103.

R. Sharma: Certain results on k-contact and (k,µ)-contact manifolds. J. of Geom. 89 (2008), 138–147.

S. Tanno: Curvature tensors and non-existence of killing vectors. Tensor N.S. 22 (1971), 387–394.

M. M. Tripathi: Ricci solitons in contact metric manifolds. arXiv:0801.4222v1

[math.DG] 28 Jan 2008.




DOI: https://doi.org/10.22190/FUMI1903503A

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)