EMBEDDING FINITE FIELDS INTO ELLIPTIC CURVES

Amirmehdi Yazdani Kashani, Hassan Daghigh

DOI Number
https://doi.org/10.22190/FUMI1905889Y
First page
889
Last page
902

Abstract


Many elliptic curve cryptosystems require an encoding function from a finite field Fq into Fq-rational points of an elliptic curve. We propose a uniform encoding to general elliptic curves over Fq. We also discuss about an injective case of SWU encoing for hyperelliptic curves of genus 2. Moreover we discuss about an injective encoding for elliptic curves with a point of order two over a finite field and present a description for these elliptic curves.

Keywords

elliptic curve; cryptosystem; encoding function; finite field.

Full Text:

PDF

References


D. J. Bernstein, P. Birkner, M. Joye, T. Lange and C. Peters: Twisted edwards curves. In: International Conference on Cryptology in Africa, Springer, Berlin, Heidelberg, 2008, p. 389-405.

D. J. Bernstein, M. Hamburg, A. Krosnova and T. Lange: Elliptic-curve points indistinguishable from uniform random strings. In: Proceedings of the 2013 ACM SIGSAC

conference on Computer and communications security, ACM, 2013, p. 967-980.

D. Boneh, M. Franklin: Identity-based encryption from the Weil pairing. In: Annual international cryptology conference, Springer, Berlin, Heidelberg, 2001, p. 213-229.

E. Brier, J. -S. Coron, T. Icart, D. Madore, H. RandriaM and M. Tibouchi: Efficient indifferentiable hashing into ordinary elliptic curves. In: Annual Cryptology Conference, Springer, Berlin, Heidelberg, 2010, p. 237-254.

O. Chevassut, P. A. Fouque, P. GaudRY and D. Pointcheval: The twist-augmented technique for key exchange. In: International Workshop on Public Key Cryptography, Springer, Berlin, Heidelberg, 2006, p. 410-426.

H. Cohen: A course in computational algebraic number theory. volume 138 of Graduate Texts in Mathematics, Springer-Verlag, Berlin, 1993.

R. R. Farashahi: Hashing into Hessian curves. In: International Conference on Cryptology in Africa, Springer, Berlin, Heidelberg, 2011, p. 278-289.

R. R. Farashahi, I. E. Shparlinski and J. F. Voloch: On hashing into elliptic curves. Journal of Mathematical Cryptology, 2009, 3.4: 353-360.

P. A. Fouque, A. Joux and M. Tibouchi: Injective encodings to elliptic curves. In: Australasian Conference on Information Security and Privacy, Springer, Berlin, Heidelberg, 2013, p. 203-218.

P.A. Fouque, M. Tibouchi: Deterministic encoding and hashing to odd hyperelliptic curves. In: International Conference on Pairing-Based Cryptography, Springer, Berlin, Heidelberg, 2010, p. 265-277.

T. Icart: How to hash into elliptic curves. In: Advances in Cryptology-CRYPTO 2009, Springer, Berlin, Heidelberg, 2009, p. 303-316.

N. Koblitz : Elliptic curve cryptosystems. Mathematics of computation, 1987, 48.177: 203-209.

A. J. Menezes, T. Okamoto and S. A. Vanstone: Reducing elliptic curve logarithms to logarithms in a finite field. iEEE Transactions on information Theory, 1993, 39.5:

-1646.

A. Shallue, C. E. Van De Woestijne: Construction of rational points on elliptic curves over finite fields. In: International Algorithmic Number Theory Symposium, Springer, Berlin, Heidelberg, 2006, p. 510-524.

J.H. Silverman: Advanced Topics in the Arithmetic of Elliptic Curves. Grad. Texts in Math., vol. 151, Springer, New York, 1994.

M. Ulas: Rational points on certain hyperelliptic curves over finite fields. Bull. Polish Acad. Sci. Math., 55(2), 2007: 97-104.

W.C. Waterhouse, Abelian Varieties over Finite Fields, Annales scientifiques de l’ ´ Ecole Normale Sup´ erieure 2, no. 4 (1969).




DOI: https://doi.org/10.22190/FUMI1905889Y

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)