EMBEDDING FINITE FIELDS INTO ELLIPTIC CURVES
Abstract
Keywords
Full Text:
PDFReferences
D. J. Bernstein, P. Birkner, M. Joye, T. Lange and C. Peters: Twisted edwards curves. In: International Conference on Cryptology in Africa, Springer, Berlin, Heidelberg, 2008, p. 389-405.
D. J. Bernstein, M. Hamburg, A. Krosnova and T. Lange: Elliptic-curve points indistinguishable from uniform random strings. In: Proceedings of the 2013 ACM SIGSAC
conference on Computer and communications security, ACM, 2013, p. 967-980.
D. Boneh, M. Franklin: Identity-based encryption from the Weil pairing. In: Annual international cryptology conference, Springer, Berlin, Heidelberg, 2001, p. 213-229.
E. Brier, J. -S. Coron, T. Icart, D. Madore, H. RandriaM and M. Tibouchi: Efficient indifferentiable hashing into ordinary elliptic curves. In: Annual Cryptology Conference, Springer, Berlin, Heidelberg, 2010, p. 237-254.
O. Chevassut, P. A. Fouque, P. GaudRY and D. Pointcheval: The twist-augmented technique for key exchange. In: International Workshop on Public Key Cryptography, Springer, Berlin, Heidelberg, 2006, p. 410-426.
H. Cohen: A course in computational algebraic number theory. volume 138 of Graduate Texts in Mathematics, Springer-Verlag, Berlin, 1993.
R. R. Farashahi: Hashing into Hessian curves. In: International Conference on Cryptology in Africa, Springer, Berlin, Heidelberg, 2011, p. 278-289.
R. R. Farashahi, I. E. Shparlinski and J. F. Voloch: On hashing into elliptic curves. Journal of Mathematical Cryptology, 2009, 3.4: 353-360.
P. A. Fouque, A. Joux and M. Tibouchi: Injective encodings to elliptic curves. In: Australasian Conference on Information Security and Privacy, Springer, Berlin, Heidelberg, 2013, p. 203-218.
P.A. Fouque, M. Tibouchi: Deterministic encoding and hashing to odd hyperelliptic curves. In: International Conference on Pairing-Based Cryptography, Springer, Berlin, Heidelberg, 2010, p. 265-277.
T. Icart: How to hash into elliptic curves. In: Advances in Cryptology-CRYPTO 2009, Springer, Berlin, Heidelberg, 2009, p. 303-316.
N. Koblitz : Elliptic curve cryptosystems. Mathematics of computation, 1987, 48.177: 203-209.
A. J. Menezes, T. Okamoto and S. A. Vanstone: Reducing elliptic curve logarithms to logarithms in a finite field. iEEE Transactions on information Theory, 1993, 39.5:
-1646.
A. Shallue, C. E. Van De Woestijne: Construction of rational points on elliptic curves over finite fields. In: International Algorithmic Number Theory Symposium, Springer, Berlin, Heidelberg, 2006, p. 510-524.
J.H. Silverman: Advanced Topics in the Arithmetic of Elliptic Curves. Grad. Texts in Math., vol. 151, Springer, New York, 1994.
M. Ulas: Rational points on certain hyperelliptic curves over finite fields. Bull. Polish Acad. Sci. Math., 55(2), 2007: 97-104.
W.C. Waterhouse, Abelian Varieties over Finite Fields, Annales scientifiques de l’ ´ Ecole Normale Sup´ erieure 2, no. 4 (1969).
DOI: https://doi.org/10.22190/FUMI1905889Y
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)