CERTAIN GEOMETRIC PROPERTIES OF A NORMALIZED HYPER-BESSEL FUNCTION

ibrahim Aktaş

DOI Number
https://doi.org/10.22190/FUMI2001179A
First page
179
Last page
186

Abstract


In the present paper, by making use of previous results on analytic functions, certain geometric properties including starlikeness of order α and convexity of order α of a normalized hyper-Bessel function have been investigated. In addition, some conditions of the mentioned function which belongs to the Hardy space have been given. Moreover, specific examples of the results which refer to special values of the parameters have also been presented.


Keywords

analytic function, hyper-Bessel function, starlikeness of order α, convexity of order α, Hardy space.

Full Text:

PDF

References


bibitem{aktas1} textsc{.{I}. Aktac{s}}: textit{Partial sums of hyper-Bessel function with applications}. Hacet. J. Math. Stat., (Accepted).

bibitem{aktas2} textsc{.{I}. Aktac{s}}: textit{ On some properties of hyper-Bessel and related functions}. TWMS J. App. and Eng. Math., textbf{9:1} (2019), 30--37.

bibitem{aktas3} textsc{.{I}. Aktac{s}, 'A. Baricz}: textit{Bounds for the radii of starlikeness of some $q$-Bessel functions}. Results Math., textbf{72:1--2} (2017), 947--963.

bibitem{aktas4}textsc{.{I}. Aktac{s}, 'A. Baricz, H. Orhan}: textit{Bounds for the radii of starlikeness and convexity of some special functions}, Turk. J. Math., textbf{42:1} (2018), 211--226.

bibitem{aktas5}textsc{.{I}. Aktac{s}, 'A. Baricz and S. Singh}: textit{Geometric and monotonic properties of hyper-Bessel functions}, Ramanujan. J., (Accepted).

bibitem{aktas6}textsc{.{I}. Aktac{s}, 'A. Baricz, N. Yau{g}mur}: textit{Bounds for the radii of univalence of some special functions}, Math. Inequal. Appl., textbf{20:3} (2017), 825--843.

bibitem{B06}textsc{ 'A. Baricz}: textit{Bessel transforms and Hardy space of generalized Bessel functions}, Mathematica, textbf{48} ( 2006), 127--136.

bibitem{lecture}textsc{'A. Baricz}: textit{Generalized Bessel Functions of the First Kind}. Springer-Verlag, Berlin, 2010.

bibitem{brown}textsc{R.K. Brown}: textit{Univalence of Bessel functions}. Proc. Amer. Math. Soc., textbf{11:2} (1960), 278--283.

bibitem{Delerue}textsc{P. Delerue}: textit{Sur le calcul symbolic `{a} n variables et fonctions hyper-bess'{e}liennes (II)}. Annales Soc. Sci. Bruxelle Ser. 1, textbf{3} (1953), 229--274.

bibitem{Duren}textsc{P. L. Duren}: textit{Theory of $mathcal{H}^{p}$ spaces}. Academic Press, Newyork, 1970.

bibitem{EK70}textsc{P. J. Eenigenburg, F. R. Keogh}: textit{The Hardy class of some univalent functions and their derivatives}. Michigan Math. J., textbf{17} (1970), 335--346.

bibitem{KT60}textsc{E. Kreyszig, J. Todd}: textit{The radius of univalence of Bessel functions}. Illinois J. Math., textbf{4} (1960), 143--149.

bibitem{Ponnusamy}textsc{ S. Ponnusamy}: textit{The Hardy space of hypergeometric functions}. Complex Variables, textbf{29} (1996), 83--96.

bibitem{Silverman75}textsc{H. Silverman}: textit{Univalent functions with negative coefficients}. Proc. Am. Math. Soc., textbf{51:1} (1975), 109--116.

bibitem{Wat}textsc{G.N. Watson}: {em A Treatise of the Theory of Bessel Functions}. Cambridge Univ. Press, Cambridge, 1944.




DOI: https://doi.org/10.22190/FUMI2001179A

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)