COMPARISON OF VARIOUS FRACTIONAL BASIS FUNCTIONS FOR SOLVING FRACTIONAL-ORDER LOGISTIC POPULATION MODEL
Abstract
Keywords
Full Text:
PDFReferences
S. Abbas, M. Banerjee and S. Momani, Dynamical analysis of fractional-order modified logistic model, Comput. Math. Appl., 62 (2011) 1098-1104.
M. Abramowitz, I.A. Stegun (Eds.), Handbook of Mathematical Functions, Dover, New York, 1965.
A.H. Bhrawy, T.M. Taha, J.A.T. Machado, A review of operational matrices and spectral techniques for fractional calculus, Nonlinear Dyn. 81(3) (2015) 1023-1052.
I. Celik, Collocation method and residual correction using Chebyshev series, Appl. Math. Comput., 174 (2) (2006) 910-920.
V.S. Chelyshkov, Alternative orthogonal polynomials and quadratures, ETNA (Electron. Trans. Numer. Anal.) 25 (2006) 17-26.
V.S. Chelyshkov, A variant of spectral method in the theory of hydrodynamic stability, Hydromech. 68 (1994) 105-109.
C.F. Chen, C.H. Hsiao, A state-space approach to Walsh series solution of
linear systems, Int. J. Systems Sci. 6(9) (1975) 833-858.
K. Diethelm, A.D. Freed, The Frac PECE subroutine for the numerical solution of differential equations of fractional order, in: S. Heinzel, T. Plesser (Eds.), Forschung und Wissenschaftliches Rechnen 1998, Gessellschaft fur Wissenschaftliche Datenverarbeitung, Gottingen, 57-71 (1999).
K. Diethelm, N. J. Ford, and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn. 29(1) (2002) 3-22.
S. S. Ezz-Eldien, On solving fractional logistic population models with applications, Comp. Appl. Math., https://doi.org/10.1007/s40314-018-0693-4 (2018).
M. Izadi, Fractional polynomial approximations to the solution of fractional Riccati equation. Punjab Univ. J. Math. 51(11) (2019), 123-141.
M. Izadi, Approximate solutions for solving fractional-order Painlevé equations. Contemp. Math. 1(1) (2019), 12-24.
M. Izadi, A comparative study of two Legendre-collocation schemes applied to fractional logistic equation, Int. J. Appl. Comput. Math 6(3) (2020), 71. https://doi.org/10.1007/s40819-020-00823-4
S. Kazem, S. Abbasbandy, and S. Kumar: Fractional-order Legendre functions for solving fractional-order differential equations. Appl. Math. Model. 37(7) (2013), 5498-5510.
A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo: Theory and Application of Fractional Differential Equations. Elsevier Science (North-Holland), Amsterdam, 2006.
C. Oguza, M. Sezer, Chelyshkov collocation method for a class of mixed functional integro-differential equations, Appl. Math. comput. 259 (2015) 943-954.
K. Parand, M. Delkhosh, Solving Volterra's population growth model of arbitrary order using the generalized fractional order of the Chebyshev functions, Ricerche Mat., 65 (2016) 307-328.
P.N. Paraskevopoulos, P.D. Sparis, S.G. Mouroutsos, The Fourier series operational matrix of integration, Int. J. Syst. Sci. 16 (1985) 171-176.
H. Pastijn, Chaotic growth with the logistic model of P.-F. Verhulst in The Logistic Map and the Route to Chaos. Understanding Complex Systems, pp. 3–11. Springer, Berlin (2006).
F. Pitolli, L. Pezza, A fractional spline collocation method for the fractional order logistic equation, in Approximation Theory XV: San Antonio 2016, Springer (2017).
G. P. Rao, Piecewise Constant Orthogonal Functions and Their Application to Systems and Control, Springer, New York, 1983.
P.D. Sparis, S.G. Mouroutsos, A comparative study of the operational matrices of integration and
differentiation for orthogonal polynomial series, Int. J. Control, 42 (1985) 621-638.
M.I. Syam , H.I. Siyyam , I. Al-Subaihi , Tau-path following method for solving the Riccati equation with fractional order, J. Comput. Methods Phys. Article ID 207916, 7 pages, (2014).
A. Talaei, Chelyshkov collocation approach for solving linear weakly singular Volterra integral equations,
Journal of Applied Mathematics and Computing, 2018, doi:https://doi.org/10.1007/s12190-018-1209-5.
B. J. West, Exact solution to fractional logistic equation. Physica A, 429,103-108, 2015.
S. Yuzbasi, A collocation method for numerical solutions of fractional-order Logistic population model,
International Journal of Biomathematics, 9 (2) (2016) 1650031-45.
DOI: https://doi.org/10.22190/FUMI2004181I
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)