EXISTENCE AND UNIQUENESS RESULTS FOR A COUPLED SYSTEM OF HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS WITH MULTI-POINT BOUNDARY CONDITIONS
Abstract
Keywords
Full Text:
PDFReferences
bibitem {1}M. R. Ali, A.R. Hadhoud and H.M. Srivastava: textit{Solution of
fractional Volterra-Fredholm integro-differential equations under mixed
boundary conditions by using the HOBW method}. Advances in Difference
Equations. Article ID 115, (2019), 1-14.
bibitem {2}B. Ahmad, S.K. Ntouyas: textit{A fully Hadamard type integral
boundary value problem of a coupled system of fractional differential
equations}. Fract. Calc. Appl. Anal. 17(2), (2014), 348-360.
bibitem {3}A. Anber, S. Belarbi and Z. Dahmani: textit{New existence and
uniqueness results for fractional differential equations}. Analele Stiintifice
aleemph{ }Universitatii Ovidius Constanta Seria Matematica. Vol. 21(3),
(2013), 33-41.
bibitem {4}C.Z. Bai and J.X. Fang: textit{The existence of a positive
solution for a singular coupled system of nonlinear fractional differential
equations}. Applied Mathematics and Computation. 150(3), (2004) 611-621.
bibitem {5}D. Delbosco, L. Rodino: textit{Existence and uniqueness for a
nonlinear fractional differential equation}. J. Math. Anal. Appl. 204,
(4), (1996), 429-440.
bibitem {6}K. Diethelm, N.J. Ford: textit{Analysis of fractional
differential equations}. J. Math. Anal. Appl. 265(2), (2002), 229-248 .
bibitem {7}K. Diethelm, G. Walz: textit{Numerical solution of fraction order
differential equations by extrapolation}. Numer. Algorithms. 16(3), (1998), 231-253,
bibitem {8}M. Houas, Z. Dahmani, M. Benbachir: textit{New results for a
boundary value problem for differential equations of arbitrary order}.
International Journal of Modern Mathematical Sciences. 7(2), (2013), 195-211.
bibitem {9}M. Houas, Z. Dahmani: textit{New results for a coupled system of
fractional differential equations}. Facta Universitatis (NIS) Ser. Math.
Inform. 28(2),(2013), 133-150.
bibitem {10}M. Houas, Z. Dahmani: textit{New results for a system of two
fractional differential equations involving }$n$textit{ Caputo derivatives}.
Kragujevac J. Math. 38 (2014), 283--301.
bibitem {11}A.M.A. El-Sayed:textit{ Nonlinear functional differential
equations of arbitrary orders}. Nonlinear Anal. 33(2), (1998), 181-186.
bibitem {12}V. Gafiychuk, B. Datsko, and V. Meleshko: textit{Mathematical
modeling of time fractional reaction-diffusion systems}. Journal of
Computational and Applied Mathematics. 220(1-2), ( 2008), 215-225.
bibitem {13}A.A. Kilbas, H.M. Srivastava, J.J. Trujillo: textit{Theory and
applications of fractional differential equations}. emph{N}orth-Holland
Mathematics Studies, 204, Elsevier Science B.V. Amsterdam, 2006.
bibitem {14}V. Lakshmikantham, A.S. Vatsala: textit{Basic theory of
fractional differential equations}. Nonlinear Anal. 69(8), (2008), 2677-2682.
bibitem {15}J. Liang,Z. Liu, X. Wang: textit{Solvability for a couple system
of nonlinear fractional differential equations in a Banach space}. Fractional
Calculus and Applied Analysis. 16(1), (2013), 51-63.
bibitem {16}F. Mainardi, Fractional calculus: textit{Some basic problem in
continuum and statistical mechanics. Fractals and fractional calculus in
continuum mechanics}. Springer, Vienna. 1997.
bibitem {17}S.K. Ntouyas: textit{Existence results for first order boundary
value problems for fractional differential equations and inclusions with
fractional integral boundary conditions}. Journal of Fractional Calculus and
Applicationsemph{. }3(9),(2012), 1-14.
bibitem {18}I. Podlubny, I. Petras, B.M. Vinagre, P. O'leary, L. Dorcak:
textit{Analogue realizations of fractional-order controllers. Fractional
order calculus and its applications}. Nonlinear Dynam. 29(4),(2002), 281-296.
bibitem {19}M.U. Rehman ,R.A Khan and N.A Asif :textit{Three point boundary
value problems for nonlinear fractional differential equations}.emph{ }Acta
Mathematicaemph{ Scientia} 2011,31B(4), 1337-1346.
bibitem {20}H. M. Srivastava, A.M. A. El-Sayed and F. M. Gaafar: textit{A
class of nonlinear boundary value problems for an arbitrary fractional-order
differential equation with the Riemann-Stieltjes functional integral and
infinite-point boundary conditions}. Symmetry. 10(10), (2018), 1-13.
bibitem {21}X. Su: textit{Boundary value problem for a coupled system of
nonlinear fractional differential equations}. Applied Mathematics Letters.
(1),(2009, 64-69 .
bibitem {22}I. Tejado, B. M. Vinagre, O.E. Traver, J. Prieto-Arranz and C.
Nuevo-Gallardo: Back to basics: Meaning of the parameters of fractional order PID controllers. Mathematics.7(2019), Article ID 533, 1-10.
bibitem {23}J. Wang, H. Xiang, Z. Liu: textit{Positive solution to nonzero
boundary values problem for a coupled system of nonlinear fractional
differential equations}. International Journal of Differential Equations.
Article ID 186928, 12 pages, 2010.
bibitem {24}W. Yang: textit{Positive solutions for a coupled system of
nonlinear fractional differential equations with integral boundary
conditions}. Comput. Math. Appl. 63,(2012), 288-297.
bibitem {25}Y. Zhang, Z. Bai, T. Feng: textit{Existence results for a
coupled system of nonlinear fractional three-point boundary value problems at
resonance.} Comput. Math. Appl. 61,(2011) 1032-1047.
DOI: https://doi.org/10.22190/FUMI2003843H
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)